Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 835: 155408, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35469874

RESUMO

In developing countries, agriculture generally represents a large fraction of GHG emissions reported in National Inventories, and emissions are typically estimated using Tier 1 IPCC guidelines. However, field data and locally adapted simulation models can improve the accuracy of IPCC estimations. In this study we aimed to quantify anthropogenic N2O emissions from croplands of Argentina through field measurements, model simulations and IPCC guidelines. We measured N2O emissions and their controlling factors in 62 plots of the Pampas Region with corn, soybean and wheat/soybean crops and in unmanaged grasslands. We accounted for gross emissions from crops and background emissions from unmanaged grasslands to calculate net anthropogenic emissions from crops as the difference between them. We calibrated and evaluated the DayCent model and then simulated different weather and management scenarios. Finally, we applied IPCC guidelines to estimate anthropogenic N2O emissions at the same plots. The DayCent model accurately simulated annual N2O emission for all crops as compared to measured data (RMSE = 1.4 g N ha-1 day-1). Measured and simulated emissions in soybean crops were higher than in corn and wheat/soybean crops. Gross N2O emissions ranged from 1.4 to 5.1 kg N ha-1 yr-1 for current environmental (soil and weather) and management (crops and fertilizer doses) conditions. Background emissions ranged between 1.1 and 1.3 kg N ha-1 yr-1, and therefore net anthropogenic emissions ranged from 0.3 to 4.0 kg N ha-1 yr-1. IPCC Tier 1 emission factors underestimated N2O releases from soybean, that were on average 4.87 times greater when estimated with DayCent and observations (0.53 vs 2.47 and 2.69 kg N ha-1 yr-1, respectively). On the contrary, IPCC estimates for corn and wheat/soybean crops were similar to modeled and measured values. Our results suggest that N2O emissions from the vast 15 million ha of soybean croplands in the Pampas Region may be substantially underestimated.


Assuntos
Glycine max , Óxido Nitroso , Agricultura , Argentina , Produtos Agrícolas , Fertilizantes , Óxido Nitroso/análise , Solo , Triticum , Zea mays
2.
Oecologia ; 168(1): 221-30, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21748322

RESUMO

Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P < 0.001). Although soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.


Assuntos
Poaceae/metabolismo , Solo , Animais , Argentina , Clima , Fungicidas Industriais/farmacologia , Insetos/efeitos dos fármacos , Insetos/fisiologia , Isópteros , Naftalenos/farmacologia , Nitrogênio/metabolismo , Poaceae/efeitos dos fármacos , Microbiologia do Solo
3.
Ecology ; 90(9): 2642-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19769141

RESUMO

Litter lignin and nutrient content, annual rainfall, and biotic activity are not good predictors of litter decomposition in arid and semiarid ecosystems, suggesting that other factors may be important in controlling carbon turnover. We explored the relative importance of litter position (above- vs. belowground), litter type (leaf vs. root), and pulsed water events (large vs. small) on mass loss with grass species of the semiarid Patagonian steppe. In a factorial experiment of mesocosms, we incubated leaf and root litter simultaneously above- and belowground and manipulated water availability with large and small pulses. Significant interactions between position and litter type and position and pulse sizes demonstrated interactive controls on organic mass loss. Aboveground decomposition showed no response to pulse size or litter type, as roots and leaves decomposed equally rapidly under all circumstances. In contrast, belowground decomposition was significantly altered by litter type and water pulses, with roots decomposing significantly slower and small water pulses reducing belowground decomposition. The results of this mesocosm experiment support the idea that controls other than water availability may dominate aboveground mass loss, while a combination of recalcitrant litter and water penetration in the soil profile are critical factors determining belowground decomposition, which is ultimately mediated by biotic degradation.


Assuntos
Biodegradação Ambiental , Ecossistema , Poaceae/fisiologia , Água , Argentina , Clima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA