Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biomolecules ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785968

RESUMO

Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell-cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) is a multifunctional intrinsically disordered protein (IDP) best described as a transcriptional regulator. Both proteins are involved in the development and metastasis of several types of tumors. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with RYBP by using in cellulo methods, namely immunofluorescence (IF) and proximity ligation assay (PLA), and in vitro biophysical techniques, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), and isothermal titration calorimetry (ITC). We also characterized the binding of the two proteins by using in silico experiments. Our results showed that there was binding in tumor and non-tumoral cell lines. Binding in vitro between the two proteins was also monitored and found to occur with a dissociation constant in the low micromolar range (~10 µM). Finally, in silico experiments provided additional information on the possible structure of the binding complex, especially on the binding ARM-PKP1 hot-spot. Our findings suggest that RYBP might be a rescuer of the high expression of PKP1 in tumors, where it could decrease the epithelial-mesenchymal transition in some cancer cells.


Assuntos
Proteínas Intrinsicamente Desordenadas , Placofilinas , Ligação Proteica , Humanos , Placofilinas/metabolismo , Placofilinas/genética , Placofilinas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Domínios Proteicos , Dicroísmo Circular
2.
Int J Biol Macromol ; 246: 125632, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399862

RESUMO

RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 µM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Linhagem Celular , Neoplasias/genética , Epigênese Genética , Proteínas Repressoras/genética
3.
Protein Sci ; 32(8): e4723, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409874

RESUMO

PADI4 is one of the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase which is crucial for down-regulation of degradation of the tumor suppressor gene p53. Given the relationship between both PADI4 and MDM2 with p53-signaling pathways, we hypothesized they may interact directly, and this interaction could be relevant in the context of cancer. Here, we showed their association in the nucleus and cytosol in several cancer cell lines. Furthermore, binding was hampered in the presence of GSK484, an enzymatic PADI4 inhibitor, suggesting that MDM2 could bind to the active site of PADI4, as confirmed by in silico experiments. In vitro and in silico studies showed that the isolated N-terminal region of MDM2, N-MDM2, interacted with PADI4, and residues Thr26, Val28, Phe91 and Lys98 were more affected by the presence of the enzyme. Moreover, the dissociation constant between N-MDM2 and PADI4 was comparable to the IC50 of GSK484 from in cellulo experiments. The interaction between MDM2 and PADI4 might imply MDM2 citrullination, with potential therapeutic relevance for improving cancer treatment, due to the generation of new antigens.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/química , Ubiquitina-Proteína Ligases/química , Desiminases de Arginina em Proteínas/metabolismo , Linhagem Celular , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
4.
J Med Food ; 26(7): 511-520, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37379464

RESUMO

In solid tumors, such as breast cancer, hypoxic microenvironment worsens patient prognoses. We have previously reported in MCF-7 breast cancer cells that, under hypoxic conditions, hydroxytyrosol (HT) downregulates the level of reactive oxygen species, reduces the expression of hypoxia inducible factor-1α (HIF-1α), and, at high concentrations, can bind to the aryl hydrocarbon receptor (AhR). With this background, the present study investigated whether the most abundant extra virgin olive oil (EVOO) phenolic compound tyrosol (TYR), with a chemical structure similar to HT but with only one hydroxyl group, exerts comparable effects. Our results revealed that, although TYR did not show any antioxidant activity in hypoxic MCF-7 cells, it inhibited the PI3K/Akt/mTOR/S6 kinase (S6K) pathway and reduced the expression of HIF-1α and some of its target genes. Besides, TYR showed a lower binding affinity with the cytosolic transcription factor AhR, and even reduced its transcriptional activity. Some of these results are positive to control tumor progression in a hypoxic environment; however, they are observed at doses unachievable with diet intake or nutraceutical presentations. Considering that EVOO phenols can have synergistic effects, a mixture of low doses of TYR and other phenols could be useful to achieve these beneficial effects.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Células MCF-7 , Hipóxia , Fenóis/farmacologia , Azeite de Oliva/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Microambiente Tumoral
5.
Biomed Pharmacother ; 162: 114657, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37023623

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC), is the most common aggressive cancer of the pancreas. The standard care of PDAC includes tumor resection and chemotherapy, but the lack of early diagnosis and the limited response to the treatment worsens the patient's condition. In order to improve the efficiency of chemotherapy, we look for more efficient systems of drug delivery. We isolated and fully characterized small Extracellular Vesicles (EVs) from the RWP-1 cell line. Our study indicates that the direct incubation method was the most efficient loading protocol and that a minimum total amount of drug triggers an effect on tumor cells. Therefore, we loaded the small EVs with two chemotherapeutic drugs (Temozolomide and EPZ015666) by direct incubation method and the amount of drug loaded was measured by high-performance liquid chromatography (HPLC). Finally, we tested their antiproliferative effect on different cancer cell lines. Moreover, the system is highly dependent on the drug structure and therefore RWP-1 small EVsTMZ were more efficient than RWP-1 small EVsEPZ015666. RWP-1 derived small EVs represent a promising drug delivery tool that can be further investigated in preclinical studies and its combination with PRMT5 inhibitor can be potentially developed in clinical trials for the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias Pancreáticas
6.
J Mol Biol ; 435(8): 168033, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858171

RESUMO

The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions. We characterized the interaction between NUPR1 and PADI4 in vitro, in silico, and in cellulo. The interaction of NUPR1 and PADI4 occurred with a dissociation constant of 18 ± 6 µM. The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch surrounding the key residue Ala33, as pinpointed by: (i) computational results; and, (ii) site-directed mutagenesis of residues of NUPR1. The association between PADI4 and wild-type NUPR1 was also assessed in cellulo by using proximity ligation assays (PLAs) and immunofluorescence (IF), and it occurred mainly in the nucleus. Moreover, binding between NUPR1L and PADI4 also occurred in vitro with an affinity similar to that of NUPR1. Molecular modelling provided information on the binding hot spot for PADI4. This is an example of a disordered partner of PADI4, whereas its other known interacting proteins are well-folded. Altogether, our results suggest that the NUPR1/PADI4 complex could have crucial functions in modulating DNA-repair, favoring metastasis, or facilitating citrullination of other proteins.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cromatina , Proteínas Intrinsicamente Desordenadas , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina Desiminase do Tipo 4 , Sequência de Bases , Cromatina/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
7.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982984

RESUMO

Glioblastoma (GBM), characterized by fast growth and invasion into adjacent tissue, is the most aggressive cancer of brain origin. Current protocols, which include cytotoxic chemotherapeutic agents, effectively treat localized disease; however, these aggressive therapies present side effects due to the high doses administered. Therefore, more efficient ways of drug delivery have been studied to reduce the therapeutic exposure of the patients. We have isolated and fully characterized small extracellular vesicles (EVs) from seven patient-derived GBM cell lines. After loading them with two different drugs, Temozolomide (TMZ) and EPZ015666, we observed a reduction in the total amount of drugs needed to trigger an effect on tumor cells. Moreover, we observed that GBM-derived small EVs, although with lower target specificity, can induce an effect on pancreatic cancer cell death. These results suggest that GBM-derived small EVs represent a promising drug delivery tool for further preclinical studies and potentially for the clinical development of GBM treatments.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Resistencia a Medicamentos Antineoplásicos
8.
Biochim Biophys Acta Proteins Proteom ; 1871(2): 140868, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372391

RESUMO

Plakophilin 1 (PKP1), a member of the armadillo repeat family of proteins, is a key structural component of cell-cell adhesion scaffolds, although it can also be found in other cell locations, including the cytoplasm and the nucleus. PADI4 (peptidyl-arginine deiminase 4) is one of the human isoforms of a family of enzymes engaged in the conversion of arginine to citrulline, and is present in monocytes, macrophages, granulocytes, and in several types of cancer cells. It is the only family member observed both within the nucleus and the cytoplasm under ordinary conditions. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with PADI4, by using several biophysical methods, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), isothermal titration calorimetry (ITC), and molecular simulations; furthermore, binding was also tested by Western-blot (WB) analyses. Our results show that there was binding between the two proteins, with a dissociation constant in the low micromolar range (∼ 1 µM). Molecular modelling provided additional information on the possible structure of the binding complex, and especially on the binding hot-spot predicted for PADI4. This is the first time that the interaction between these two proteins has been described and studied. Our findings could be of importance to understand the development of tumors, where PKP1 and PADI4 are involved. Moreover, our findings pave the way to describe the formation of neutrophil extracellular traps (NETs), whose construction is modulated by PADI4, and which mediate the proteolysis of cell-cell junctions where PKP1 intervenes.


Assuntos
Placofilinas , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Western Blotting , Hidrolases , Neoplasias , Proteína-Arginina Desiminase do Tipo 4/metabolismo
9.
Cells ; 11(14)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35883608

RESUMO

PADI4 is a peptidyl-arginine deiminase (PADI) involved in the conversion of arginine to citrulline. PADI4 is present in macrophages, monocytes, granulocytes, and several cancer cells. It is the only PADI family member observed within both the nucleus and the cytoplasm. PADI4 has a predicted nuclear localization sequence (NLS) comprising residues Pro56 to Ser83, to allow for nuclear translocation. Recent predictors also suggest that the region Arg495 to Ile526 is a possible NLS. To understand how PADI4 is involved in cancer, we studied the ability of intact PADI4 to bind importin α3 (Impα3), a nuclear transport factor that plays tumor-promoting roles in several cancers, and its truncated species (ΔImpα3) without the importin-binding domain (IBB), by using fluorescence, circular dichroism (CD), and isothermal titration calorimetry (ITC). Furthermore, the binding of two peptides, encompassing the first and the second NLS regions, was also studied using the same methods and molecular docking simulations. PADI4 interacted with both importin species, with affinity constants of ~1-5 µM. The isolated peptides also interacted with both importins. The molecular simulations predict that the anchoring of both peptides takes place in the major binding site of Impα3 for the NLS of cargo proteins. These findings suggest that both NLS regions were essentially responsible for the binding of PADI4 to the two importin species. Our data are discussed within the framework of a cell mechanism of nuclear transport that is crucial in cancer.


Assuntos
Carioferinas , Sinais de Localização Nuclear , Proteína-Arginina Desiminase do Tipo 4 , Núcleo Celular/metabolismo , Humanos , Carioferinas/metabolismo , Simulação de Acoplamento Molecular , Sinais de Localização Nuclear/metabolismo , Ligação Proteica , Proteína-Arginina Desiminase do Tipo 4/metabolismo
10.
Arch Biochem Biophys ; 717: 109125, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35081374

RESUMO

PADI4 (protein-arginine deiminase, also known as protein l-arginine iminohydrolase) is one of the human isoforms of a family of Ca2+-dependent proteins catalyzing the conversion of arginine to citrulline. Although the consequences of this process, known as citrullination, are not fully understood, all PADIs have been suggested to play essential roles in development and cell differentiation. They have been found in a wide range of cells and tissues and, among them, PADI4 is present in macrophages, monocytes, granulocytes and cancer cells. In this work, we focused on the biophysical features of PADI4 and, more importantly, how its expression was altered in cancer cells. Firstly, we described the different expression patterns of PADI4 in various cancer cell lines and its colocalization with the tumor-related protein p53. Secondly, we carried out a biophysical characterization of PADI4, by using a combination of biophysical techniques and in silico molecular dynamics simulations. Our biochemical results suggest the presence of several forms of PADI4 with different subcellular localizations, depending on the cancer cell line. Furthermore, PADI4 could have a major role in tumorigenesis by regulating p53 expression in certain cancer cell lines. On the other hand, the native structure of PADI4 was strongly pH-dependent both in the absence or presence of Ca2+, and showed two pH-titrations at basic and acidic pH values. Thus, there was a narrow pH range (from 6.5 to 8.0) where the protein was dimeric and had a native structure, supporting its role in histones citrullination. Thermal denaturations were always two-state, but guanidinium-induced ones showed that PADI4 unfolded through at least one intermediate. Our simulation results suggest that the thermal melting of PADI4 structure was rather homogenous throughout its sequence. The overall results are discussed in terms of the functional role of PADI4 in the development of cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Arginina/metabolismo , Carcinogênese/metabolismo , Catálise , Diferenciação Celular , Linhagem Celular Tumoral , Citrulina/metabolismo , Regulação da Expressão Gênica , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
11.
Adv Drug Deliv Rev ; 182: 114117, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065142

RESUMO

Extracellular vesicles (EVs) are produced by almost all cell types in vivo or in vitro. Among them, exosomes are small nanovesicles with a lipid bilayer, proteins and RNAs actively involved in cellular communication, suggesting that they may be used both as biomarkers and for therapeutic purposes in diseases such as cancer. Moreover, the idea of using them as drug delivery vehicle arises as a promising field of study. Here, we reviewed recent findings showing the importance of EVs, with special focus in exosomes as biomarkers including the most relevant proteins found in different cancer types and it is discussed the FDA approved tests which use exosomes in clinical practice. Finally, we present an overview of the different chimeric EVs developed in the last few years, demonstrating that they can be conjugate to nanoparticles, biomolecules, cancer drugs, etc., and can be developed for a specific cancer treatment. Additionally, we summarized the clinical trials where EVs are used in the treatment of several cancer types aiming to improve the prognosis of these deadly diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antígeno CD24/administração & dosagem , Comunicação Celular , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA