Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338681

RESUMO

Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.


Assuntos
Neoplasias , Selênio , Humanos , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Inflamação/genética , Neoplasias/genética , Biomarcadores
2.
Front Endocrinol (Lausanne) ; 15: 1281135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362276

RESUMO

Stress is the body's physiological reaction to a dangerous or threatening situation, leading to a state of alertness. This reaction is necessary for developing an effective adaptive response to stress and maintaining the body's homeostasis. Chronic stress, caused mainly by social stress, is what primarily affects the world's population. In the last decades, the emergence of psychological disorders in humans has become more frequent, and one of the symptoms that can be observed is aggressiveness. In the brain, stress can cause neuronal circuit alterations related to the action of hormones in the central nervous system. Leptin, for example, is a hormone capable of acting in brain regions and neuronal circuits important for behavioral and emotional regulation. This study investigated the correlation between chronic social stress, neuroendocrine disorders, and individual behavioral changes. Then, leptin and its receptors' anatomical distribution were evaluated in the brains of mice subjected to a protocol of chronic social stress. The model of spontaneous aggression (MSA) is based on grouping young mice and posterior regrouping of the same animals as adults. According to the regrouping social stress, we categorized the mice into i) harmonic, ii) attacked, and iii) aggressive animals. For leptin hormone evaluation, we quantified plasma and brain concentrations by ELISA and evaluated its receptor and isoform expression by western blotting. Moreover, we verified whether stress or changes in leptin levels interfered with the animal's body weight. Only attacked animals showed reduced plasma leptin concentration and weight gain, besides a higher expression of the high-molecular-weight leptin receptor in the amygdala and the low-molecular-weight receptor in the hippocampal region. Aggressive animals showed a reduction in the cerebral concentration of leptin in the hippocampus and a reduced high-and low-molecular-weight leptin receptor expression in the amygdala. The harmonic animals showed a reduction in the cerebral concentration of leptin in the pituitary and a reduced expression of the high-molecular-weight leptin receptor in the amygdala. We then suggest that leptin and its receptors' expression in plasma and specific brain areas are involved in how individuals react in stressful situations, such as regrouping stress in MSA.


Assuntos
Leptina , Receptores para Leptina , Adulto , Animais , Camundongos , Peso Corporal , Leptina/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo
3.
Front Microbiol ; 14: 1295017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188583

RESUMO

Chagas disease (CD) is caused by the flagellate protozoan Trypanosoma cruzi. It is endemic in Latin America. Nowadays around 6 million people are affected worldwide, and 75 million are still at risk. CD has two evolutive phases, acute and chronic. The acute phase is mostly asymptomatic, or presenting unspecific symptoms which makes it hard to diagnose. At the chronic phase, patients can stay in the indeterminate form or develop cardiac and/or digestive manifestations. The two trypanocide drugs available for the treatment of CD are benznidazole (BZ) and nifurtimox (NFX), introduced in the clinic more than five decades ago. WHO recommends treatment for patients at the acute phase, at risk of congenital infection, for immunosuppressed patients and children with chronic infection. A high cure rate is seen at the CD acute phase but better treatment schemes still need to be investigated for the chronic phase. There are some limitations within the use of the trypanocide drugs, with side effects occurring in about 40% of the patients, that can lead patients to interrupt treatment. In addition, patients with advanced heart problems should not be treated with BZ. This is a neglected disease, discovered 114 years ago that still has no drug effective for their chronic phase. Multiple social economic and cultural barriers influence CD research. The high cost of the development of new drugs, in addition to the low economical return, results in the lack of investment. More economic support is required from governments and pharmaceutical companies on the development of more research for CD treatment. Two approaches stand out: repositioning and combination of drugs, witch drastically decrease the cost of this process, when compared to the development of a new drug. Here we discuss the progress of the clinical trials for the etiological and pathophysiological treatment for CD. In summary, more studies are needed to propose a new drug for CD. Therefore, BZ is still the best option for CD. The trials in course should clarify more about new treatment regimens, but it is already possible to indicate that dosage and time of treatment need to be adjusted.

4.
Front Cell Infect Microbiol ; 12: 1017040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530434

RESUMO

Chronic Chagasic cardiomyopathy (CCC), a progressive inflammatory and fibrosing disease, is the most prominent clinical form of Chagas disease, a neglected tropical disease caused by Trypanosoma cruzi infection. During CCC, the parasite remains inside the cardiac cells, leading to tissue damage, involving extensive inflammatory response and irregular fibrosis. Among the fibrogenic factors is transforming growth factor-ß (TGF-ß), a key cytokine controlling extracellular matrix synthesis and degradation. TGF-ß is involved in CCC onset and progression, with increased serum levels and activation of its signaling pathways in the cardiac tissue, which crucially contributes to fibrosis. Inhibition of the TGF-ß signaling pathway attenuates T. cruzi infection and prevents cardiac damage in an experimental model of acute Chagas disease. The aim of this study was to investigate the effect of TGF-ß neutralization on T. cruzi infection in both in vitro and in vivo pre-clinical models, using the 1D11 monoclonal antibody. To this end, primary cultures of cardiac cells were infected with T. cruzi trypomastigote forms and treated with 1D11. For in vivo studies, 1D11 was administered in different schemes for acute and chronic phase models (Swiss mice infected with 104 parasites from the Y strain and C57BL/6 mice infected with 102 parasites from the Colombian strain, respectively). Here we show that the addition of 1D11 to cardiac cells greatly reduces cardiomyocyte invasion by T. cruzi and the number of parasites per infected cell. In both acute and chronic experimental models, T. cruzi infection altered the electrical conduction, decreasing the heart rate, increasing the PR interval and the P wave duration. The treatment with 1D11 reduced cardiac fibrosis and reversed electrical abnormalities improving cardiac performance. Taken together, these data further support the major role of the TGF-ß signaling pathways in T. cruzi-infection and their biological consequences on parasite/host interactions. The therapeutic effects of the 1D11 antibody are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-ß neutralization.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Cardiomiopatia Chagásica/tratamento farmacológico , Trypanosoma cruzi/metabolismo , Camundongos Endogâmicos C57BL , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Fibrose
6.
Mem Inst Oswaldo Cruz ; 117: e220001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35319676

RESUMO

Translational research (TR) is an interdisciplinary branch of the biomedical field that seeks to connect its three supporting pillars: basic research on the bench, the hospital beds and other health system services, and the delivery of products for the well-being and health of the community. Here, we review the five transition stages of the TR spectrum, registering the lessons learned during > 20 years leading to the first clinical trial designed and performed in Brazil for testing a complementary treatment for Chagas disease (CD): the selenium trial (STCC). Lessons learned were: (1) to consider all the TR spectrum since the beginning of the project; (2) to start simultaneously animal studies and translation to humans; (3) to ensure a harmonious interaction between clinical and basic research teams; (4) to include MSc and PhD students only in pre-clinical and basic studies (TR0) or vertical clinical studies using retrospective samples and data (TR1); (5) to identify potential suppliers in the national commercial market for a future final treatment since the pre-clinical stage; (6) to keep an international network of experts as permanent advisers on the project. In the whole process, some perspectives were created: a complementary clinical trial for the opened questions and the construction of a Brazilian clinical CD platform.


Assuntos
Doença de Chagas , Selênio , Animais , Doença de Chagas/tratamento farmacológico , Suplementos Nutricionais , Humanos , Estudos Retrospectivos , Selênio/uso terapêutico , Pesquisa Translacional Biomédica
7.
Biomolecules ; 12(3)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35327541

RESUMO

For over 60 years, selenium (Se) has been known as an essential microelement to many biological functions, including cardiovascular homeostasis. This review presents a compilation of studies conducted in the past 20 years related to chronic Chagas disease cardiomyopathy (CCC), caused by Trypanosoma cruzi infection, a neglected disease that represents a global burden, especially in Latin America. Experimental and clinical data indicate that Se may be used as a complementary therapy to prevent heart failure and improve heart function. Starting from the main questions "Is Se deficiency related to heart inflammation and arrhythmogenesis in CCC?" and "Could Se be recommended as a therapeutic strategy for CCC?", we show evidence implicating the complex and multidetermined CCC physiopathology, discussing its possible interplays with the multifunctional cytokine TGF-ß as regulators of immune response and fibrosis. We present two new proposals to face this global public health challenge in vulnerable populations affected by this parasitic disease: fibrosis modulation mediated by TGF-ß pathways and the possible use of selenoproteins as antioxidants regulating the increased reactive oxygen stress present in CCC inflammatory environments. We assess the opportunity to consider the beneficial effects of Se in preventing heart failure as a concept to be applied for CCC patients.


Assuntos
Doença de Chagas , Doenças Transmissíveis , Insuficiência Cardíaca , Selênio , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Fibrose , Humanos , Selênio/uso terapêutico , Fator de Crescimento Transformador beta , Trypanosoma cruzi/fisiologia
8.
Mem Inst Oswaldo Cruz ; 117: e210395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239842

RESUMO

Transforming growth factor beta (TGF-ß) is deeply involved on the pathogenesis of Chagas disease. Our group has been investigating the participation of this pleiotropic cytokine in different aspects of Chagas disease over the last 20 years. Important observations have been made, such as: (i) the ability of Trypanosoma cruzi in activating latent TGF-ß; (ii) the potential involvement of TGF-ß pathway on T. cruzi invasion of host cells; (iii) association of TGF-ß with parasite intracellular replication; (iv) cardiac fibrosis development and maintenance; (v) disruption of Connexin-43 plaque structures and (vi) inflammation and immune response. In this perspective article we intend to discuss the advances of the potential use of new therapies targeting TGF-ß to treat the cardiac alterations of Chagas disease-affected patients.


Assuntos
Cardiomiopatia Chagásica , Trypanosoma cruzi , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/metabolismo , Coração , Humanos , Miocárdio/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Trypanosoma cruzi/fisiologia
9.
Mem. Inst. Oswaldo Cruz ; 117: e220001, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1365151

RESUMO

Translational research (TR) is an interdisciplinary branch of the biomedical field that seeks to connect its three supporting pillars: basic research on the bench, the hospital beds and other health system services, and the delivery of products for the well-being and health of the community. Here, we review the five transition stages of the TR spectrum, registering the lessons learned during > 20 years leading to the first clinical trial designed and performed in Brazil for testing a complementary treatment for Chagas disease (CD): the selenium trial (STCC). Lessons learned were: (1) to consider all the TR spectrum since the beginning of the project; (2) to start simultaneously animal studies and translation to humans; (3) to ensure a harmonious interaction between clinical and basic research teams; (4) to include MSc and PhD students only in pre-clinical and basic studies (TR0) or vertical clinical studies using retrospective samples and data (TR1); (5) to identify potential suppliers in the national commercial market for a future final treatment since the pre-clinical stage; (6) to keep an international network of experts as permanent advisers on the project. In the whole process, some perspectives were created: a complementary clinical trial for the opened questions and the construction of a Brazilian clinical CD platform.

10.
Mem. Inst. Oswaldo Cruz ; 117: e210395, 2022.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360602

RESUMO

Transforming growth factor beta (TGF-β) is deeply involved on the pathogenesis of Chagas disease. Our group has been investigating the participation of this pleiotropic cytokine in different aspects of Chagas disease over the last 20 years. Important observations have been made, such as: (i) the ability of Trypanosoma cruzi in activating latent TGF-β; (ii) the potential involvement of TGF-β pathway on T. cruzi invasion of host cells; (iii) association of TGF-β with parasite intracellular replication; (iv) cardiac fibrosis development and maintenance; (v) disruption of Connexin-43 plaque structures and (vi) inflammation and immune response. In this perspective article we intend to discuss the advances of the potential use of new therapies targeting TGF-β to treat the cardiac alterations of Chagas disease-affected patients.

11.
EClinicalMedicine ; 40: 101105, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34485877

RESUMO

BACKGROUND: Chagas disease (caused by Trypanosoma cruzi infection) evolves to chronic chagasic cardiomyopathy (CCC) affecting 1.8 million people worldwide. This is the first randomized, placebo-controlled, double-blinded, clinical trial designed to estimate efficacy and safety of selenium (Se) treatment in CCC. METHODS: 66 patients with CCC stages B1 (left ventricular ejection fraction [LVEF] > 45% and no heart failure; n = 54) or B2 (LVEF < 45% and no heart failure; n = 12) were randomly assigned to receive 100 mcg/day sodium selenite (Se, n = 32) or placebo (Pla, n = 34) for one year (study period: May 2014-September 2018). LVEF changes over time and adverse effects were investigated. Trial registration number: NCT00875173 (clinicaltrials.gov). FINDINGS: No significant differences between the two groups were observed for the primary outcome: mean LVEF after 6 (ß= +1.1 p = 0.51 for Se vs Pla) and 12 months (ß= +2.1; p = 0.23). In a subgroup analysis, statistically significant longitudinal changes were observed for mean LVEF in the stage B2 subgroup (ß= +10.1; p = 0.02 for Se [n = 4] vs Pla [n = 8]). Se treatment was safe for CCC patients, and the few adverse effects observed were similarly distributed across the two groups. INTERPRETATION: Se treatment did not improve cardiac function (evaluated from LVEF) in CCC. However, in the subgroup of patients at B2 stage, a potential beneficial influence of Se was observed. Complementary studies are necessary to explore diverse Se dose and/or associations in different CCC stages (B2 and C), as well as in A and B1 stages with longer follow-up. FUNDING: Brazilian Ministry of Health, Fiocruz, CNPq, FAPERJ.

12.
Front Cell Neurosci ; 15: 696834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489642

RESUMO

Aggression is defined as hostile behavior that results in psychological damage, injury and even death among individuals. When aggression presents itself in an exacerbated and constant way, it can be considered escalating or pathological. The association between social stress and the emergence of exacerbated aggressiveness is common and is suggested to be interconnected through very complex neurobiological factors. For example, alterations in the expression of the dopaminergic receptors D1 and D2, reactive oxygen species (ROS) and the c-Fos protein in the cortex have been observed. Our objective was to analyze which factors are involved at the neurobiological level in the highly aggressive response of Swiss Webster adult male mice in a vivarium. In this work, we investigated the relationship among dopaminergic receptors, the production of ROS and the expression of c-Fos. Mice with exacerbated aggression were identified by the model of spontaneous aggression (MSA) based on the grouping of young mice and the regrouping of the same animals in adulthood. During the regrouping, we observed different categories of behavior resulting from social stress, such as (i) highly aggressive animals, (ii) defeated animals, and (iii) harmonic groups. To evaluate the dopaminergic system and the c-Fos protein, we quantified the expression of D1 and D2 dopaminergic receptors by Western blotting and fluorescence immunohistochemistry and that of the c-Fos protein by fluorescence immunohistochemistry. The possible production of ROS was also evaluated through the dihydroethidium (DHE) assay. The results showed that aggressive and subordinate mice showed a reduction in the expression of the D1 receptor, and no significant difference in the expression of the D2 receptor was observed between the groups. In addition, aggressive mice exhibited increased production of ROS and c-Fos protein. Based on our results, we suggest that exacerbated aggression is associated with social stress, dysregulation of the dopaminergic system and exacerbated ROS production, which leads to a state of cellular oxidative stress. The overexpression of c-Fos due to social stress suggests an attempt by the cell to produce antioxidant agents to reduce the toxic cellular concentration of ROS.

13.
PLoS Negl Trop Dis ; 15(7): e0009534, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288905

RESUMO

BACKGROUND: Chagas Disease (CD) affects 6-7 million people worldwide and is related to poverty-promoting conditions. Chronic asymptomatic cases are mostly invisible to health systems. Aiming (1) to translate CD discoveries into education/information practices to raise alertness and empowerment of affected people; and (2) to perform an active search of CD cases, articulating intersectoral actions to improve the access of infected people to the local health service for the treatment of CD; our research group developed and tested under field conditions as innovative social technology: an itinerant education interdisciplinary setting named "Chagas Express XXI" (CE21). METHODOLOGY: CE21 was created as an "imaginary train" with ~40 ArtScience workshops, games, laboratory activities and conversation circles. An entry/exit plus six activity modules combined associations of affected people, microscopic observations, One Health education, and wellness activities. CE21 was conceived as a social technology, since all the processes were co-created with CD patients and inter-sector local partners. Descriptive statistics showed quantitative data collected throughout the expeditions (CD knowledge, serological results). Qualitative data accessed the public perceptions about the education activities. PRINCIPAL FINDINGS: CE21 was exhibited in local educational institutions (schools, universities) in four cities, engaging 2,117 people that evaluated the 41 activities carried out. Citizens and health professionals enjoyed acquisition of information related to blood, parasites, vectors, reservoirs, environmental changes, and social determinants of CD. Further, local legacies of 600 participants volunteer for health promotion groups and CD associations, local empowerment groups to fight for better health conditions, and 05 mural paintings. We observed that 81% of the participants ignored the possibility of treating CD while 52% of the participants requested a blood test for CD showing seropositivity in 20% of them. CONCLUSIONS: CE21 is a social technology potentially useful for health and science education and active search of asymptomatic CD chronic cases. Moreover, this technology may be adapted to understand and to cooperate in other potentially epidemic situations, especially NTDs related.


Assuntos
Doença de Chagas/epidemiologia , Educação em Saúde , Promoção da Saúde/métodos , Ciência/educação , Adulto , Idoso , Brasil/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tecnologia , Adulto Jovem
14.
Front Cell Infect Microbiol ; 11: 767576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186778

RESUMO

The anti-inflammatory cytokine transforming growth factor beta (TGF-ß) plays an important role in Chagas disease (CD), a potentially life-threatening illness caused by Trypanosoma cruzi. In this review we revisited clinical studies in CD patients combined with in vitro and in vivo experiments, presenting three main sections: an overview of epidemiological, economic, and clinical aspects of CD and the need for new biomarkers and treatment; a brief panorama of TGF-ß roles and its intracellular signaling pathways, and an update of what is known about TGF-ß and Chagas disease. In in vitro assays, TGF-ß increases during T. cruzi infection and modulates heart cells invasion by the parasite fostering its intracellular parasite cycle. TGF-ß modulates host immune response and inflammation, increases heart fibrosis, stimulates remodeling, and slows heart conduction via gap junction modulation. TGF-ß signaling inhibitors reverts these effects opening a promising therapeutic approach in pre-clinical studies. CD patients with higher TGF-ß1 serum level show a worse clinical outcome, implicating a predictive value of serum TGF-ß as a surrogate biomarker of clinical relevance. Moreover, pre-clinical studies in chronic T. cruzi infected mice proved that inhibition of TGF-ß pathway improved several cardiac electric parameters, reversed the loss of connexin-43 enriched intercellular plaques, reduced fibrosis of the cardiac tissue, restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Finally, TGF-ß polymorphisms indicate that CD immunogenetics is at the base of this phenomenon. We searched in a Brazilian population five single-nucleotide polymorphisms (-800 G>A rs1800468, -509 C>T rs1800469, +10 T>C rs1800470, +25 G>C rs1800471, and +263 C>T rs1800472), showing that CD patients frequently express the TGF-ß1 gene genotypes CT and TT at position -509, as compared to noninfected persons; similar results were observed with genotypes TC and CC at codon +10 of the TGF-ß1 gene, leading to the conclusion that 509 C>T and +10 T>C TGF-ß1 polymorphisms are associated with Chagas disease susceptibility. Studies in genetically different populations susceptible to CD will help to gather new insights and encourage the use of TGF-ß as a CD biomarker.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Biomarcadores , Doença de Chagas/parasitologia , Humanos , Imunogenética , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/metabolismo
15.
PLoS Negl Trop Dis ; 14(12): e0008969, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347472

RESUMO

CD8 T cells are regarded as pivotal players in both immunoprotection and immunopathology following Trypanosoma cruzi infection. Previously, we demonstrated the expansion of CD8+ T lymphocytes in the spleen of T. cruzi-infected mice under treatment with benznidazole (N-benzyl-2-nitroimidazole acetamide; Bz), a drug available for clinical therapy. This finding underlies the concept that the beneficial effects of Bz on controlling acute T. cruzi infection are related to a synergistic process between intrinsic trypanocidal effect and indirect triggering of the active immune response. In the present study, we particularly investigated the effect of Bz treatment on the CD8+ T cell subset following T. cruzi infection. Herein we demonstrated that, during acute T. cruzi infection, Bz treatment reduces and abbreviates the parasitemia, but maintains elevated expansion of CD8+ T cells. Within this subset, a remarkable group of CD8low cells was found in both Bz-treated and non-treated infected mice. In Bz-treated mice, early pathogen control paralleled the lower frequency of recently activated CD8low cells, as ascertained by CD69 expression. However, the CD8low subset sustains significant levels of CD44highCD62Llow and CD62LlowT-bethigh effector memory T cells, in both Bz-treated and non-treated infected mice. These CD8low cells also comprise the main group of spontaneous interferon (IFN)-γ-producing CD8+ T cells. Interestingly, following in vitro anti-CD3/CD28 stimulation, CD8+ T cells from Bz-treated T. cruzi-infected mice exhibited higher frequency of IFN-γ+ cells, which bear mostly a CD8low phenotype. Altogether, our results point to the marked presence of CD8low T cells that arise during acute T. cruzi infection, with Bz treatment promoting their significant expansion along with a potential effector program for high IFN-γ production.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Doença Aguda , Animais , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/parasitologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Trypanosoma cruzi/genética
16.
PLoS Negl Trop Dis ; 13(7): e0007602, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31365537

RESUMO

TGF-ß involvement in Chagas disease cardiomyopathy has been clearly demonstrated. The TGF-ß signaling pathway is activated in the cardiac tissue of chronic phase patients and is associated with an increase in extracellular matrix protein expression. The aim of this study was to investigate the effect of GW788388, a selective inhibitor of TßR1/ALK5, on cardiac function in an experimental model of chronic Chagas' heart disease. To this end, C57BL/6 mice were infected with Trypanosoma cruzi (102 parasites from the Colombian strain) and treated orally with 3mg/kg GW788388 starting at 120 days post-infection (dpi), when 100% of the infected mice show cardiac damage, and following three distinct treatment schedules: i) single dose; ii) one dose per week; or iii) three doses per week during 30 days. The treatment with GW788388 improved several cardiac parameters: reduced the prolonged PR and QTc intervals, increased heart rate, and reversed sinus arrhythmia, and atrial and atrioventricular conduction disorders. At 180 dpi, 30 days after treatment interruption, the GW3x-treated group remained in a better cardiac functional condition. Further, GW788388 treatment reversed the loss of connexin-43 enriched intercellular plaques and reduced fibrosis of the cardiac tissue. Inhibition of the TGF-ß signaling pathway reduced TGF-ß/pSmad2/3, increased MMP-9 and Sca-1, reduced TIMP-1/TIMP-2/TIMP-4, and partially restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Moreover, GW788388 administration did not modify cardiac parasite load during the infection but reduced the migration of CD3+ cells to the heart tissue. Altogether, our data suggested that the single dose schedule was not as effective as the others and treatment three times per week during 30 days seems to be the most effective strategy. The therapeutic effects of GW788388 are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-ß inhibitors.


Assuntos
Benzamidas/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Coração/efeitos dos fármacos , Pirazóis/uso terapêutico , Fator de Crescimento Transformador beta/antagonistas & inibidores , Tripanossomicidas/uso terapêutico , Animais , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Doença Crônica , Conexina 43/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose/tratamento farmacológico , Coração/parasitologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Carga Parasitária , Trypanosoma cruzi/efeitos dos fármacos
17.
Trans R Soc Trop Med Hyg ; 107(8): 518-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23787193

RESUMO

BACKGROUND: Transforming growth factor-ß1 (TGF-ß1) may be implicated in the development of Chagas heart disease. However, the clinical value of TGF-ß1 measurement is yet to be determined. METHODS: We retrospectively analyzed the outcome of 54 Chagas disease patients without heart failure and with left ventricular (LV) ejection fraction >45% whose TGF-ß1 serum values were determined between January 1998 and December 1999. Primary end point was all-cause mortality and secondary end point was the combination of all-cause mortality or hospitalization due to worsening heart failure or cardiac arrhythmias. RESULTS: TGF-ß1 was independently associated with the occurrence of the primary and secondary end points. The optimal cutoff for TGF-ß1 to identify the primary end point was 12.9 ng/ml (area under the curve = 0.82, p = 0.004, sensitivity 100%, and specificity 57%) and to identify the secondary end point was 30.8 ng/ml (area under the curve = 0.72, p = 0.03, sensitivity 60%, and specificity 86%). LV ejection fraction and LV end-diastolic diameter were also independent predictors of the primary and secondary endpoints, respectively. CONCLUSION: The described association between TGF-ß1 and clinical outcome provides evidence towards the clinical value of TGF-ß1 in Chagas disease.


Assuntos
Biomarcadores/sangue , Doença de Chagas/sangue , Fator de Crescimento Transformador beta1/sangue , Adulto , Biomarcadores/análise , Cardiomiopatia Chagásica/sangue , Cardiomiopatia Chagásica/mortalidade , Ecocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fator de Crescimento Transformador beta1/análise
18.
PLoS One ; 7(6): e38736, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719930

RESUMO

Transforming growth factor beta (TGF-ß) plays a pivotal role in Chagas disease, not only in the development of chagasic cardiomyopathy, but also in many stages of the T. cruzi life cycle and survival in the host cell environment. The intracellular signaling pathways utilized by T. cruzi to regulate these mechanisms remain unknown. To identify parasite proteins involved in the TGF-ß response, we utilized a combined approach of two-dimensional gel electrophoresis (2DE) analysis and mass spectrometry (MS) protein identification. Signaling via TGF-ß is dependent on events of phosphorylation, which is one of the most relevant and ubiquitous post-translational modifications for the regulation of gene expression, and especially in trypanosomatids, since they lack several transcriptional control mechanisms. Here we show a kinetic view of T. cruzi epimastigotes (Y strain) incubated with TGF-ß for 1, 5, 30 and 60 minutes, which promoted a remodeling of the parasite phosphorylation network and protein expression pattern. The altered molecules are involved in a variety of cellular processes, such as proteolysis, metabolism, heat shock response, cytoskeleton arrangement, oxidative stress regulation, translation and signal transduction. A total of 75 protein spots were up- or down-regulated more than twofold after TGF-ß treatment, and from these, 42 were identified by mass spectrometry, including cruzipain-the major T. cruzi papain-like cysteine proteinase that plays an important role in invasion and participates in the escape mechanisms used by the parasite to evade the host immune system. In our study, we observed that TGF-ß addition favored epimastigote proliferation, corroborating 2DE data in which proteins previously described to be involved in this process were positively stimulated by TGF-ß.


Assuntos
Fosfoproteínas/metabolismo , Proteômica , Fator de Crescimento Transformador beta/fisiologia , Trypanosoma cruzi/fisiologia , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Imuno-Histoquímica , Espectrometria de Massas em Tandem
19.
PLoS Negl Trop Dis ; 6(6): e1696, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720109

RESUMO

BACKGROUND: Chagas disease induced by Trypanosoma cruzi (T. cruzi) infection is a major cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. Transforming Growth Factor beta (TGFß) has been involved in several regulatory steps of T. cruzi invasion and in host tissue fibrosis. GW788388 is a new TGFß type I and type II receptor kinase inhibitor that can be orally administered. In the present work, we studied its effects in vivo during the acute phase of experimental Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: Male Swiss mice were infected intraperitoneally with 10(4) trypomastigotes of T. cruzi (Y strain) and evaluated clinically. We found that this compound given once 3 days post infection (dpi) significantly decreased parasitemia, increased survival, improved cardiac electrical conduction as measured by PR interval in electrocardiography, and restored connexin43 expression. We could further show that cardiac fibrosis development, evaluated by collagen type I and fibronectin expression, could be inhibited by this compound. Interestingly, we further demonstrated that administration of GW788388 at the end of the acute phase (20 dpi) still significantly increased survival and decreased cardiac fibrosis (evaluated by Masson's trichrome staining and collagen type I expression), in a stage when parasite growth is no more central to this event. CONCLUSION/SIGNIFICANCE: This work confirms that inhibition of TGFß signaling pathway can be considered as a potential alternative strategy for the treatment of the symptomatic cardiomyopathy found in the acute and chronic phases of Chagas disease.


Assuntos
Benzamidas/administração & dosagem , Cardiomiopatia Chagásica/prevenção & controle , Pirazóis/administração & dosagem , Fator de Crescimento Transformador beta/antagonistas & inibidores , Trypanosoma cruzi/patogenicidade , Administração Oral , Animais , Modelos Animais de Doenças , Fibrose/prevenção & controle , Masculino , Camundongos , Miocárdio/patologia , Resultado do Tratamento
20.
Trends Parasitol ; 27(3): 102-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21212020

RESUMO

Chagas disease, a neglected tropical disease discovered over 100 years ago, is caused by the intracellular parasite Trypanosoma cruzi and is most frequently associated with chronic cardiomyopathy and digestive disorders. Initial invasion of cells is followed by progressive inflammatory destruction of heart, muscles, nerves, and gastrointestinal (GI) tract tissue. Approximately 30% of patients progress to a chronic cardiomyopathy associated with increased morbidity and mortality. Seven to 10% of patients develop megasyndromes involving the GI tract, in particular, the esophagus and the colon. Results from several studies suggest that selenium (Se) deficiency could be an important factor in the pathogenesis of Chagas disease. In this opinion article, Se supplementation is proposed as an adjuvant therapy for treatment of chronic Chagas disease.


Assuntos
Antioxidantes/uso terapêutico , Doença de Chagas/tratamento farmacológico , Selênio/deficiência , Selênio/uso terapêutico , Animais , Cardiomiopatia Chagásica/sangue , Cardiomiopatia Chagásica/tratamento farmacológico , Doença de Chagas/sangue , Quimioterapia Adjuvante , Progressão da Doença , Humanos , Camundongos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA