Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Genome Biol Evol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106433

RESUMO

Cytoplasmic incompatibility (CI), a non-Mendelian genetic phenomenon, involves manipulation of host reproduction by Wolbachia, a maternally transmitted alphaproteobacterium. The underlying mechanism is centered around the CIF system governed by two genes, cifA and cifB, where cifB induces embryonic lethality, and cifA counteracts it. Recent investigations have unveiled intriguing facets of this system, including diverse cifB variants, prophage association in specific strains, copy-number variation, and rapid component divergence, hinting at a complex evolutionary history. We utilized comparative genomics to systematically classify CIF systems, analyze their locus structure and domain architectures, and reconstruct their diversification and evolutionary trajectories. Our new classification identifies ten distinct CIF types, featuring not just versions present in Wolbachia, but also other intracellular bacteria, and eukaryotic hosts. Significantly, our analysis of CIF loci reveals remarkable variability in gene composition and organization, encompassing an array of diverse endonucleases, variable toxin domains, deubiquitinating peptidases (DUBs), prophages, and transposons. We present compelling evidence that the components within the loci have been diversifying their sequences and domain architectures through extensive, independent lateral transfers and inter-locus recombination involving gene conversion. The association with diverse transposons and prophages, coupled with selective pressures from host immunity, likely underpins the emergence of CIF loci as recombination hotspots. Our investigation also posits the origin of CifB-REase domains from mobile elements akin to CR-effectors and Tribolium Medea1 factor, which is linked to another non-Mendelian genetic phenomenon. This comprehensive genomic analysis offers novel insights into the molecular evolution and genomic foundations of Wolbachia-mediated host reproductive control.

2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38903092

RESUMO

Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation non-uniformly to secure against the possibility that favorable growth conditions, which puts sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early utilize a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay non-sporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.

3.
mSystems ; 9(6): e0084723, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809013

RESUMO

Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.


Assuntos
Proteínas de Bactérias , Evolução Molecular , Proteínas de Choque Térmico , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Estresse Fisiológico/genética , Filogenia , Domínios Proteicos , Membrana Celular/metabolismo
4.
Sci Adv ; 10(22): eadn2789, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809974

RESUMO

Cell motility universally relies on spatial regulation of focal adhesion complexes (FAs) connecting the substrate to cellular motors. In bacterial FAs, the Adventurous gliding motility machinery (Agl-Glt) assembles at the leading cell pole following a Mutual gliding-motility protein (MglA)-guanosine 5'-triphosphate (GTP) gradient along the cell axis. Here, we show that GltJ, a machinery membrane protein, contains cytosolic motifs binding MglA-GTP and AglZ and recruiting the MreB cytoskeleton to initiate movement toward the lagging cell pole. In addition, MglA-GTP binding triggers a conformational shift in an adjacent GltJ zinc-finger domain, facilitating MglB recruitment near the lagging pole. This prompts GTP hydrolysis by MglA, leading to complex disassembly. The GltJ switch thus serves as a sensor for the MglA-GTP gradient, controlling FA activity spatially.


Assuntos
Proteínas de Bactérias , Adesões Focais , Guanosina Trifosfato , Adesões Focais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Guanosina Trifosfato/metabolismo , Ligação Proteica
5.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585835

RESUMO

In Mycobacterium tuberculosis proteins that are post-translationally modified with Pup, a prokaryotic ubiquitin-like protein, can be degraded by proteasomes. While pupylation is reversible, mechanisms regulating substrate specificity have not been identified. Here, we identify the first depupylation regulators: CoaX, a pseudokinase, and pantothenate, an essential, central metabolite. In a Δ coaX mutant, pantothenate synthesis enzymes were more abundant, including PanB, a substrate of the Pup-proteasome system. Media supplementation with pantothenate decreased PanB levels in a coaX and Pup-proteasome-dependent manner. In vitro , CoaX accelerated depupylation of Pup∼PanB, while addition of pantothenate inhibited this reaction. Collectively, we propose CoaX contributes to proteasomal degradation of PanB by modulating depupylation of Pup∼PanB in response to pantothenate levels. One Sentence Summary: A pseudo-pantothenate kinase regulates proteasomal degradation of a pantothenate synthesis enzyme in M. tuberculosis .

6.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464158

RESUMO

Magnesium (Mg2+) uptake systems are present in all domains of life given the vital role of this ion. Bacteria acquire Mg2+ via conserved Mg2+ channels and transporters. The transporters are required for growth when Mg2+ is limiting or during bacterial pathogenesis, but, despite their significance, there are no known structures for these transporters. Here we report the first structure of the Mg2+ transporter MgtA solved by single particle cryo-electron microscopy (cryo-EM). Using mild membrane extraction, we obtained high resolution structures of both a homodimeric form (2.9 Å), the first for a P-type ATPase, and a monomeric form (3.6 Å). Each monomer unit of MgtA displays a structural architecture that is similar to other P-type ATPases with a transmembrane domain and two soluble domains. The dimer interface consists of contacts between residues in adjacent soluble nucleotide binding and phosphotransfer regions of the haloacid dehalogenase (HAD) domain. We suggest oligomerization is a conserved structural feature of the diverse family of P-type ATPase transporters. The ATP binding site and conformational dynamics upon nucleotide binding to MgtA were characterized using a combination of cryo-EM, molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and mutagenesis. Our structure also revealed a Mg2+ ion in the transmembrane segments, which, when combined with sequence conservation and mutagenesis studies, allowed us to propose a model for Mg2+ transport across the lipid bilayer. Finally, our work revealed the N-terminal domain structure and cytoplasmic Mg2+ binding sites, which have implications for related P-type ATPases defective in human disease.

7.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260563

RESUMO

Flagella propel pathogens through their environments yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly in the Lyme spirochete Borrelia burgdorferi, the archetypal flagellar regulator σ28 is absent. We rediscovered gene bb0268 in B. burgdorferi as flgV, a broadly-conserved gene in the flagellar superoperon alongside σ28 in many Spirochaetes, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We found that B. burgdorferi FlgV is localized within flagellar motors. B. burgdorferi lacking flgV construct fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, B. burgdorferi lacking flgV survive and replicate in Ixodes ticks but are attenuated for dissemination and infection in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.

8.
Nucleic Acids Res ; 52(3): 1005-1026, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38163645

RESUMO

The DndABCDE systems catalysing the unusual phosphorothioate (PT) DNA backbone modification, and the DndFGH systems, which restrict invasive DNA, have enigmatic and paradoxical features. Using comparative genomics and sequence-structure analyses, we show that the DndABCDE module is commonly functionally decoupled from the DndFGH module. However, the modification gene-neighborhoods encode other nucleases, potentially acting as the actual restriction components or suicide effectors limiting propagation of the selfish elements. The modification module's core consists of a coevolving gene-pair encoding the DNA-scanning apparatus - a DndD/CxC-clade ABC ATPase and DndE with two ribbon-helix-helix (MetJ/Arc) DNA-binding domains. Diversification of DndE's DNA-binding interface suggests a multiplicity of target specificities. Additionally, many systems feature DNA cytosine methylase genes instead of PT modification, indicating the DndDE core can recruit other nucleobase modifications. We show that DndFGH is a distinct counter-invader system with several previously uncharacterized domains, including a nucleotide kinase. These likely trigger its restriction endonuclease domain in response to multiple stimuli, like nucleotides, while blocking protective modifications by invader methylases. Remarkably, different DndH variants contain a HerA/FtsK ATPase domain acquired from multiple sources, including cellular genome-segregation systems and mobile elements. Thus, we uncovered novel HerA/FtsK-dependent defense systems that might intercept invasive DNA during replication, conjugation, or packaging.


Bacteria defend against selfish genetic elements by distinguishing their genetic material through special chemical modifications and using specific enzymes to break down viral DNA. This study explores the Dnd defense system, revealing several of its poorly understood facets. The Dnd modification system, utilizing sulfur to distinguish bacterial from viral DNA, cooperates with various anti-viral and cell-suicide nuclease enzymes to limit viral infection. While previously considered its restriction component, DndFGH emerges as an independent defense system, recognizing signals like nucleotides and DNA to thwart protective modifications of invader DNA. DndH, featuring diverse versions of the HerA/FtsK ATPase domain, helped unveil several unrecognized bacterial defense systems. This discovery illuminates sophisticated bacterial defenses against viral threats during crucial cellular processes.


Assuntos
Enzimas de Restrição-Modificação do DNA , DNA , Humanos , Adenosina Trifosfatases/genética , DNA/genética , Metilação de DNA , Genoma , Genômica , Enzimas de Restrição-Modificação do DNA/metabolismo
9.
EMBO J ; 43(4): 484-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177497

RESUMO

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through the recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains, and we reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation through the ribosome quality control pathway. However, unlike SmrB, which cleaves mRNA in E. coli, we see no evidence that MutS2 mediates mRNA cleavage or promotes ribosome rescue by tmRNA. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in diverse bacteria.


Assuntos
Bacillus subtilis , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ribossomos/metabolismo , Peptídeos/metabolismo
10.
Mol Microbiol ; 121(1): 152-166, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104967

RESUMO

Small proteins (<50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance, are poorly understood. Here, we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene neighborhoods support that MntS evolved from the signal peptide of an ancestral SitA protein, acquiring a life of its own with a distinct function in Mn homeostasis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Manganês/metabolismo , Sinais Direcionadores de Proteínas , Homeostase , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/metabolismo
11.
bioRxiv ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986874

RESUMO

Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a dedicated chaperone from a distinct higher-order clade of AAA+ ATPases that activates the peptidoglycan glycosyltransferase MurG during sporulation, even though MurG does not normally require activation by a chaperone during vegetative growth. MurG redeploys to the spore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment necessitates a specific chaperone for proper MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly inactivates SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes other dedicated chaperones involved in secretion, cell-envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.

12.
J Alzheimers Dis ; 96(2): 499-505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37807778

RESUMO

Vaccine repurposing that considers individual genotype may aid personalized prevention of Alzheimer's disease (AD). In this retrospective cohort study, we used Cardiovascular Health Study data to estimate associations of pneumococcal polysaccharide vaccine and flu shots received between ages 65-75 with AD onset at age 75 or older, taking into account rs6859 polymorphism in NECTIN2 gene (AD risk factor). Pneumococcal vaccine, and total count of vaccinations against pneumonia and flu, were associated with lower odds of AD in carriers of rs6859 A allele, but not in non-carriers. We conclude that pneumococcal polysaccharide vaccine is a promising candidate for genotype-tailored AD prevention.


Assuntos
Doença de Alzheimer , Pneumonia Pneumocócica , Humanos , Idoso , Pneumonia Pneumocócica/prevenção & controle , Estudos Retrospectivos , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Vacinação , Vacinas Pneumocócicas/uso terapêutico , Genótipo
13.
bioRxiv ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886572

RESUMO

The spherical bacterium Staphylococcus aureus, a leading cause of nosocomial infections, undergoes binary fission by dividing in two alternating orthogonal planes, but the mechanism by which S. aureus correctly selects the next cell division plane is not known. To identify cell division placement factors, we performed a chemical genetic screen that revealed a gene which we termed pcdA. We show that PcdA is a member of the McrB family of AAA+ NTPases that has undergone structural changes and a concomitant functional shift from a restriction enzyme subunit to an early cell division protein. PcdA directly interacts with the tubulin-like central divisome component FtsZ and localizes to future cell division sites before membrane invagination initiates. This parallels the action of another McrB family protein, CTTNBP2, which stabilizes microtubules in animals. We show that PcdA also interacts with the structural protein DivIVA and propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Deletion of pcdA conferred abnormal, non-orthogonal division plane selection, increased sensitivity to cell wall-targeting antibiotics, and reduced virulence in a murine infection model. Targeting PcdA could therefore highlight a treatment strategy for combatting antibiotic-resistant strains of S. aureus.

14.
Nucleic Acids Res ; 51(21): 11479-11503, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889040

RESUMO

While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.


Assuntos
Ácidos Nucleicos , Nucleotídeos , Nucleotídeos/metabolismo , Bactérias/metabolismo , Células Procarióticas/metabolismo , Genômica , Ácidos Nucleicos/metabolismo
15.
Cell Rep ; 42(9): 113100, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676773

RESUMO

In ribosome-associated quality control (RQC), nascent polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ("Ala-tails") that function outside ribosomes to induce ubiquitylation by E3 ligases Pirh2 (p53-induced RING-H2 domain-containing) or CRL2 (Cullin-2 RING ligase2)-KLHDC10. Here, we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails and that structural predictions identify candidate Ala-tail-binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail-binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron-recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Humanos , Alanina/metabolismo , Sítios de Ligação , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Transporte/metabolismo
16.
mBio ; 14(5): e0151923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728345

RESUMO

IMPORTANCE: Shigella species cause bacillary dysentery, the second leading cause of diarrheal deaths worldwide. There is a pressing need to identify novel molecular drug targets. Shigella virulence phenotypes are controlled by the transcriptional regulator, VirB. We show that VirB belongs to a fast-evolving, plasmid-borne clade of the ParB superfamily, which has diverged from versions with a distinct cellular role-DNA partitioning. We report that, like classic members of the ParB family, VirB binds a highly unusual ligand, CTP. Mutants predicted to be defective in CTP binding are compromised in a variety of virulence attributes controlled by VirB, likely because these mutants cannot engage DNA. This study (i) reveals that VirB binds CTP, (ii) provides a link between VirB-CTP interactions and Shigella virulence phenotypes, (iii) provides new insight into VirB-CTP-DNA interactions, and (iv) broadens our understanding of the ParB superfamily, a group of bacterial proteins that play critical roles in many bacteria.


Assuntos
Proteínas de Ligação a DNA , Shigella , Virulência/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ligantes , Shigella flexneri , Shigella/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica
17.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398132

RESUMO

Small proteins (< 50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance are poorly understood. Here we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments, but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene-neighborhoods support that MntS evolved from an ancestral SitA, acquiring a life of its own with a distinct function in Mn homeostasis. Significance: This study demonstrates that the MntS small protein binds and inhibits the MntP Mn exporter, adding another layer to the complex regulation of Mn homeostasis. MntS also interacts with itself in cells with Mn, which could prevent it from regulating MntP. We propose that MntS and other small proteins might sense environmental signals and shut off their own regulation via binding to ligands (e.g., metals) or other proteins. We also provide evidence that MntS evolved from the signal peptide region of the Mn importer, SitA. Homologous SitA signal peptides can recapitulate MntS activities, showing that they have a second function beyond protein secretion. Overall, we establish that small proteins can emerge and develop novel functionalities from gene remnants.

18.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37293012

RESUMO

The VirB protein, encoded by the large virulence plasmid of Shigella spp., is a key transcriptional regulator of virulence genes. Without a functional virB gene, Shigella cells are avirulent. On the virulence plasmid, VirB functions to offset transcriptional silencing mediated by the nucleoid structuring protein, H-NS, which binds and sequesters AT-rich DNA, making it inaccessible for gene expression. Thus, gaining a mechanistic understanding of how VirB counters H-NS-mediated silencing is of considerable interest. VirB is unusual in that it does not resemble classic transcription factors. Instead, its closest relatives are found in the ParB superfamily, where the best-characterized members function in faithful DNA segregation before cell division. Here, we show that VirB is a fast-evolving member of this superfamily and report for the first time that the VirB protein binds a highly unusual ligand, CTP. VirB binds this nucleoside triphosphate preferentially and with specificity. Based on alignments with the best-characterized members of the ParB family, we identify amino acids of VirB likely to bind CTP. Substitutions in these residues disrupt several well-documented activities of VirB, including its anti-silencing activity at a VirB-dependent promoter, its role in generating a Congo red positive phenotype in Shigella , and the ability of the VirB protein to form foci in the bacterial cytoplasm when fused to GFP. Thus, this work is the first to show that VirB is a bona fide CTP-binding protein and links Shigella virulence phenotypes to the nucleoside triphosphate, CTP. Importance: Shigella species cause bacillary dysentery (shigellosis), the second leading cause of diarrheal deaths worldwide. With growing antibiotic resistance, there is a pressing need to identify novel molecular drug targets. Shigella virulence phenotypes are controlled by the transcriptional regulator, VirB. We show that VirB belongs to a fast-evolving, primarily plasmid-borne clade of the ParB superfamily, which has diverged from versions that have a distinct cellular role - DNA partitioning. We are the first to report that, like classic members of the ParB family, VirB binds a highly unusual ligand, CTP. Mutants predicted to be defective in CTP binding are compromised in a variety of virulence attributes controlled by VirB. This study i) reveals that VirB binds CTP, ii) provides a link between VirB-CTP interactions and Shigella virulence phenotypes, and iii) broadens our understanding of the ParB superfamily, a group of bacterial proteins that play critical roles in many different bacteria.

19.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205381

RESUMO

In Ribosome-associated Quality Control (RQC), nascent-polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ('Ala-tails') that function outside ribosomes to induce ubiquitylation by Pirh2 or CRL2-KLHDC10 E3 ligases. Here we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails, and structural predictions identify candidate Ala-tail binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.

20.
bioRxiv ; 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37205477

RESUMO

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains and reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation by the ribosome quality control pathway. Notably, we see no evidence of mRNA cleavage by MutS2, nor does it promote ribosome rescue by tmRNA as SmrB cleavage does in E. coli. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in various bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA