Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Methods ; 15(46): 6468-6475, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37982303

RESUMO

Keratin, in the form of coarse sheep wool, has been identified as an undervalued natural resource, which with the appropriate tools (e.g. a keratinase biocatalyst) can be repurposed for various textile and industrial biotechnology applications. For these purposes, we describe a novel method for identifying keratinase activity through the use of α-keratin azure (KA), an anthraquinone dyed substrate. A colourimetric method monitored the keratinase activity of Proteinase K (PK), which degrades the KA substrate and releases soluble products that are observed at 595 nm. Initially, the azure dye standard, Remazol Brilliant Blue R (RBBR), was used to calibrate the assay and allowed the kinetics of the keratinase-catalysed reaction to be determined. The assay was also used to investigate substrate pre-treatment, as well as different reaction quenching/work up conditions. Milling and washing of the KA substrate provided the best reproducibility and centrifugation was the most effective method for removing unreacted starting material. This assay was then applied to investigate the reduction of the keratin disulfide bond on keratinase-catalysed degradation. This optimised, improved and robust method will enable identification of keratinases ideally suited for application in the valorisation of the α-keratin found in natural wool fibres.


Assuntos
Queratinas , Peptídeo Hidrolases , Animais , Ovinos , Queratinas/metabolismo , Reprodutibilidade dos Testes , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Citoesqueleto/metabolismo
2.
J Biotechnol ; 339: 32-41, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34339775

RESUMO

Fermentation technology has unprecedented potential to upgrade state-of-art biotechnology and refine the processes used in existing ones, taking into account of complex technical, economic and environmental factors. Given the economic importance and ongoing challenges of biotech sector, multidisciplinary engineering technologies is poised to become an increasingly important tool along with the emergence of modern technology and innovation. This article reviews recent technology advancement in the field of fermentation using Saccharomyces cerevisiae. Interesting research progress has been made by leveraging multiple engineering fields such as electrical engineering, information engineering, electrochemical engineering and new material development, leading to recent development of novel real-time probes (electronic nose technology, analysis of yeast morphology and metabolites, timely control of glucose feed), improved understanding of electro-fermentation (enhanced electronic transfer provision), as well as application of cost-effective and sustainable materials (bioreactor vessel manufactured from textile, and yeast immobilisation support matrix made from abundant natural biomass). To the best of our knowledge, the subject is reviewed for the first time in recent years. Furthermore, this review also constitutes a futuristic S. cerevisiae fermentation process based on the recent advancement discussed.


Assuntos
Biotecnologia , Saccharomyces cerevisiae , Biomassa , Fermentação , Glucose , Engenharia Metabólica , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA