Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649053

RESUMO

The rod-shaped adult cardiomyocyte (CM) harbors a unique architecture of its lateral surface with periodic crests, relying on the presence of subsarcolemmal mitochondria (SSM) with unknown role. Here, we investigated the development and functional role of CM crests during the postnatal period. We found in rodents that CM crest maturation occurs late between postnatal day 20 (P20) and P60 through both SSM biogenesis, swelling and crest-crest lateral interactions between adjacent CM, promoting tissue compaction. At the functional level, we showed that the P20-P60 period is dedicated to the improvement of relaxation. Interestingly, crest maturation specifically contributes to an atypical CM hypertrophy of its short axis, without myofibril addition, but relying on CM lateral stretching. Mechanistically, using constitutive and conditional CM-specific knock-out mice, we identified ephrin-B1, a lateral membrane stabilizer, as a molecular determinant of P20-P60 crest maturation, governing both the CM lateral stretch and the diastolic function, thus highly suggesting a link between crest maturity and diastole. Remarkably, while young adult CM-specific Efnb1 KO mice essentially exhibit an impairment of the ventricular diastole with preserved ejection fraction and exercise intolerance, they progressively switch toward systolic heart failure with 100% KO mice dying after 13 months, indicative of a critical role of CM-ephrin-B1 in the adult heart function. This study highlights the molecular determinants and the biological implication of a new late P20-P60 postnatal developmental stage of the heart in rodents during which, in part, ephrin-B1 specifically regulates the maturation of the CM surface crests and of the diastolic function.


Assuntos
Efrina-B1 , Miócitos Cardíacos , Animais , Camundongos , Diástole , Miofibrilas
2.
Commun Biol ; 5(1): 221, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273337

RESUMO

G protein-coupled receptors (GPCRs) form the largest family of cell surface receptors. Despite considerable insights into their pharmacology, the GPCR architecture at the cell surface still remains largely unexplored. Herein, we present the specific unfolding of different GPCRs at the surface of living mammalian cells by atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS). Mathematical analysis of the GPCR unfolding distances at resting state revealed the presence of different receptor populations relying on distinct oligomeric states which are receptor-specific and receptor expression-dependent. Moreover, we show that the oligomer size dictates the receptor spatial organization with nanoclusters of high-order oligomers while lower-order complexes spread over the whole cell surface. Finally, the receptor activity reshapes both the oligomeric populations and their spatial arrangement. These results add an additional level of complexity to the GPCR pharmacology until now considered to arise from a single receptor population at the cell surface.


Assuntos
Receptores Acoplados a Proteínas G , Imagem Individual de Molécula , Animais , Membrana Celular/metabolismo , Mamíferos , Microscopia de Força Atômica/métodos , Receptores Acoplados a Proteínas G/metabolismo , Análise Espectral
3.
EMBO Mol Med ; 13(7): e13502, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033220

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Humanos , Macrófagos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/genética
4.
Biochem J ; 478(6): 1199-1225, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33740047

RESUMO

PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kß, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kß. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Humanos , Fosforilação , Transdução de Sinais , Especificidade por Substrato
5.
Phys Rev Lett ; 125(12): 128103, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016731

RESUMO

While many cellular mechanisms leading to chemotherapeutic resistance have been identified, there is an increasing realization that tumor-stroma interactions also play an important role. In particular, mechanical alterations are inherent to solid cancer progression and profoundly impact cell physiology. Here, we explore the influence of compressive stress on the efficacy of chemotherapeutics in pancreatic cancer spheroids. We find that increased compressive stress leads to decreased drug efficacy. Theoretical modeling and experiments suggest that mechanical stress decreases cell proliferation which in turn reduces the efficacy of chemotherapeutics that target proliferating cells. Our work highlights a mechanical form of drug resistance and suggests new strategies for therapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Modelos Biológicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Estresse Mecânico , Gencitabina
6.
Theranostics ; 9(22): 6369-6379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588223

RESUMO

Rapid, easy and early pancreatic cancer diagnosis and therapeutic follow up continue to necessitate an increasing attention towards the development of effective treatment strategies for this lethal disease. The non invasive quantitative assessment of pancreatic heterogeneity is limited. Here, we report the development of a preclinical imaging protocol using ultrasonography and shear wave technology in an experimental in situ pancreatic cancer model to measure the evolution of pancreatic rigidity. Methods: Intrapancreatic tumors were genetically induced by mutated Kras and p53 in KPC mice. We evaluated the feasiblity of a live imaging protocol by assessing pancreas evolution with Aixplorer technology accross 36 weeks. Lethality induced by in situ pancreatic cancer was heterogeneous in time. Results: The developed method successfully detected tumor mass from 26 weeks onwards at minimal 0.029 cm3 size. Elastography measurements using shear wave methodology had a wide detection range from 4.7kPa to 166.1kPa. Protumorigenic mutations induced a significant decrease of the rigidity of pancreatic tissue before tumors developed in correlation with the detection of senescent marker p16-positive cells. An intratumoral increased rigidity was quantified and found surprisingly heterogeneous. Tumors also presented a huge inter-individual heterogeneity in their rigidity parameters; tumors with low and high rigidity at detection evolve very heterogeneously in their rigidity parameters, as well as in their volume. Increase in rigidity in tumors detected by ultrafast elasticity imaging coincided with detection of tumors by echography and with the detection of the inflammatory protumoral systemic condition by non invasive follow-up and of collagen fibers by post-processing tumoral IHC analysis. Conclusion: Our promising results indicate the potential of the shear wave elastography to support individualization of diagnosis in this most aggressive disease.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Senescência Celular/genética , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Tempo , Proteína Supressora de Tumor p53/genética
7.
Mol Cancer Ther ; 18(2): 289-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30482853

RESUMO

BRAF inhibitors (BRAFi) are used to treat patients with melanoma harboring the V600E mutation. However, resistance to BRAFi is inevitable. Here, we identified sphingosine 1-phosphate (S1P) receptors as regulators of BRAFV600E-mutant melanoma cell-autonomous resistance to BRAFi. Moreover, our results reveal a distinct sphingolipid profile, that is, a tendency for increased very long-chain ceramide species, in the plasma of patients with melanoma who achieve a response to BRAFi therapy as compared with patients with progressive disease. Treatment with BRAFi resulted in a strong decrease in S1PR1/3 expression in sensitive but not in resistant cells. Genetic and pharmacologic interventions, that increase ceramide/S1P ratio, downregulated S1PR expression and blocked BRAFi-resistant melanoma cell growth. This effect was associated with a decreased expression of MITF and Bcl-2. Moreover, the BH3 mimetic ABT-737 improved the antitumor activity of approaches targeting S1P-metabolizing enzymes in BRAFi-resistant melanoma cells. Collectively, our findings indicate that targeting the S1P/S1PR axis could provide effective therapeutic options for patients with melanoma who relapse after BRAFi therapy.


Assuntos
Compostos de Bifenilo/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Melanoma/tratamento farmacológico , Nitrofenóis/administração & dosagem , Receptores de Lisoesfingolipídeo/metabolismo , Esfingolipídeos/sangue , Sulfonamidas/administração & dosagem , Animais , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Camundongos , Nitrofenóis/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Sulfonamidas/farmacologia , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancers (Basel) ; 10(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29865155

RESUMO

For patients with metastatic pancreatic cancer that are not eligible for surgery, signal-targeted therapies have so far failed to significantly improve survival. These therapeutic options have been tested in phase II/III clinical trials mostly in combination with the reference treatment gemcitabine. Innovative therapies aim to annihilate oncogenic dependency, or to normalize the tumoural stroma to allow immune cells to function and/or re-vascularisation to occur. Large scale transcriptomic and genomic analysis revealed that pancreatic cancers display great heterogeneity but failed to clearly delineate specific oncogene dependency, besides oncogenic Kras. Beyond these approaches, proteomics appears to be an appropriate approach to classify signal dependency and to identify specific alterations at the targetable level. However, due to difficulties in sampling, proteomic data for this pathology are scarce. In this review, we will discuss the current state of clinical trials for targeted therapies against pancreatic cancer. We will then highlight the most recent proteomic data for pancreatic tumours and their metastasis, which could help to identify major oncogenic signalling dependencies, as well as provide future leads to explain why pancreatic tumours are intrinsically resistant to signal-targeted therapies. We will finally discuss how studies on phosphatidylinositol-3-kinase (PI3K) signalling, as the paradigmatic pro-tumoural signal downstream of oncogenic Kras in pancreatic cancer, would benefit from exploratory proteomics to increase the efficiency of targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA