Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med J Malaysia ; 77(3): 357-370, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35638493

RESUMO

The emergence of infections caused by Acinetobacter baumannii, a multidrug-resistant bacterium, has been a concern worldwide. This bacterium is an important hospitalacquired pathogen that causes several diseases including ventilator-associated pneumonia, bloodstream infections, and meningitis. This study aimed to determine antibioticresistant mechanisms in the pathogenesis of A. baumannii and the alternative treatment strategies against it. The combined actions of outer membrane protein A, formation of a biofilm on biotic and abiotic surfaces, phospholipases C and D, metal homeostatic system, lipopolysaccharides, and verotoxins are relevant for virulence and pathogenesis. A. baumannii resists the broad-spectrum antibiotics by its mechanisms of resistance, such as ß-lactamases, efflux pump, aminoglycoside modifying enzymes, permeability changes, and alternation of targets. In an attempt to overcome the resistance mechanisms, plant-derived compounds and a combination of the antibiotics and the plant phytocompounds have been focused. Nanoparticles synthesised with the plant extract have been studied extensively. Furthermore, we projected modern methods, including multi-omics analysis, to study insight into mechanisms of actions of antibiotics. The information suggested that the potential antibiotic mechanisms of A. baumannii could lead to an alternative treatment against A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Humanos , beta-Lactamases
2.
New Microbes New Infect ; 21: 75-80, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29234497

RESUMO

In this study, we report the insertion sequence ISPpu21 in the oprD porin gene of carbapenem-resistant Pseudomonas aeruginosa isolates from burn patients in Tehran, Iran. Antibiotic susceptibility tests for P. aeruginosa isolates were determined. Production of metallo-ß-lactamases (MBLs) and carbapenemase was evaluated and the ß-lactamase-encoding and aminoglycoside-modifying enzyme genes were investigated by PCR and sequencing methods. The mRNA transcription level of oprD and mex efflux pump genes were evaluated by real-time PCR. The outer membrane protein profile was determined by SDS-PAGE. The genetic relationship between the P. aeruginosa isolates was assessed by random amplified polymorphic DNA PCR. In all, 10.52% (10/95) of clinical isolates of P. aeruginosa harboured the ISPpu21 insertion element in the oprD gene. The extended-spectrum ß-lactamase-encoding gene in ISPpu21-carrying isolates was blaTEM. PCR assays targeting MBL and carbapenemase-encoding genes were also negative in all ten isolates. The rmtA, aadA, aadB and armA genes were positive in all ISPpu21 harbouring isolates. The relative expression levels of the mexX, mexB, mexT and mexD genes in ten isolates ranged from 0.1- to 1.4-fold, 1.1- to 3.68-fold, 0.3- to 8.22-fold and 1.7- to 35.17-fold, respectively. The relative expression levels of the oprD in ten isolates ranged from 0.57- to 35.01-fold, which was much higher than those in the control strain P. aeruginosa PAO1. Evaluation of the outer membrane protein by SDS-PAGE suggested that oprD was produced at very low levels by all isolates. Using random amplified polymorphic DNA PCR genotyping, eight of the ten isolates containing ISPpu21 were shown to be clonally related. The present study describes a novel molecular mechanism, ISPpu21 insertion of the oprD gene, associated with carbapenem resistance in clinical P. aeruginosa isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA