Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Ther ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38894542

RESUMO

HER2 amplification occurs in about 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined HER2/EGFR targeted treatment. An alternative approach based on adoptive cell therapy (ACT) using T-cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to "on-target off-tumor" activity. Here we describe a combinatorial strategy to safely target HER2 amplification and CEA expression in CRC using a synNotch-CAR based artificial regulatory network. The natural killer cell line NK-92 was engineered with an anti-HER2 synNotch receptor driving the expression of a CAR against CEA only when engaged. After being transduced and sorted for HER2-driven CAR expression, cells were cloned. The clone with optimal performances in terms of specificity and amplitude of CAR induction demonstrated significant activity in vitro and in vivo specifically against HER2amp/CEA+ CRC models, with no effects on cells with physiological HER2 levels. The HER2-synNotch/CEA-CAR-NK system provides an innovative, scalable and safe off-the shelf cell therapy approach with potential against HER2amp CRC resistant or partially responsive to HER2/EGFR blockade.

2.
J Exp Clin Cancer Res ; 43(1): 146, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750579

RESUMO

Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.


Assuntos
Neoplasias Ovarianas , Medicina de Precisão , Neoplasias da Próstata , Humanos , Feminino , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Medicina de Precisão/métodos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Urogenitais/tratamento farmacológico , Neoplasias Urogenitais/genética , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
3.
Mol Oncol ; 18(6): 1460-1485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468448

RESUMO

Multiple strategies are continuously being explored to expand the drug target repertoire in solid tumors. We devised a novel computational workflow for transcriptome-wide gene expression outlier analysis that allows the systematic identification of both overexpression and underexpression events in cancer cells. Here, it was applied to expression values obtained through RNA sequencing in 226 colorectal cancer (CRC) cell lines that were also characterized by whole-exome sequencing and microarray-based DNA methylation profiling. We found cell models displaying an abnormally high or low expression level for 3533 and 965 genes, respectively. Gene expression abnormalities that have been previously associated with clinically relevant features of CRC cell lines were confirmed. Moreover, by integrating multi-omics data, we identified both genetic and epigenetic alternations underlying outlier expression values. Importantly, our atlas of CRC gene expression outliers can guide the discovery of novel drug targets and biomarkers. As a proof of concept, we found that CRC cell lines lacking expression of the MTAP gene are sensitive to treatment with a PRMT5-MTA inhibitor (MRTX1719). Finally, other tumor types may also benefit from this approach.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Transcriptoma/genética , Perfilação da Expressão Gênica , Metilação de DNA/genética
4.
Cell Rep Med ; 5(2): 101376, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38228147

RESUMO

The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution. Conversely, CRC cells chronically infected with colibactin develop a tolerant phenotype characterized by restored HR activity. Notably, sensitivity to colibactin correlates with response to irinotecan active metabolite SN38, in both cell lines and patient-derived organoids. Moreover, CRC cells that acquire colibactin tolerance develop cross-resistance to SN38, and a trend toward poorer response to irinotecan is observed in a retrospective cohort of CRCs harboring colibactin genomic island. Our results shed insight into colibactin activity and provide translational evidence on its chemoresistance-promoting role in CRC.


Assuntos
Neoplasias Colorretais , Escherichia coli , Peptídeos , Policetídeos , Humanos , Irinotecano/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Estudos Retrospectivos , DNA/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia
5.
J Transl Med ; 21(1): 843, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996891

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. This is due to its aggressive course, late diagnosis and its intrinsic drugs resistance. The complexity of the tumor, in terms of cell components and heterogeneity, has led to the approval of few therapies with limited efficacy. The study of the early stages of carcinogenesis provides the opportunity for the identification of actionable pathways that underpin therapeutic resistance. METHODS: We analyzed 43 Intraductal papillary mucinous neoplasms (IPMN) (12 Low-grade and 31 High-grade) by Spatial Transcriptomics. Mouse and human pancreatic cancer organoids and T cells interaction platforms were established to test the role of mucins expression on T cells activity. Syngeneic mouse model of PDAC was used to explore the impact of mucins downregulation on standard therapy efficacy. RESULTS: Spatial transcriptomics showed that mucin O-glycosylation pathway is increased in the progression from low-grade to high-grade IPMN. We identified GCNT3, a master regulator of mucins expression, as an actionable target of this pathway by talniflumate. We showed that talniflumate impaired mucins expression increasing T cell activation and recognition using both mouse and human organoid interaction platforms. In vivo experiments showed that talniflumate was able to increase the efficacy of the chemotherapy by boosting immune infiltration. CONCLUSIONS: Finally, we demonstrated that combination of talniflumate, an anti-inflammatory drug, with chemotherapy effectively improves anti-tumor effect in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Mucinas , Gencitabina , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia
6.
Cell Death Dis ; 14(2): 96, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759506

RESUMO

Telomere maintenance is necessary to maintain cancer cell unlimited viability. However, the mechanisms maintaining telomere length in colorectal cancer (CRC) have not been extensively investigated. Telomere maintenance mechanisms (TMM) include the re-expression of telomerase or alternative lengthening of telomeres (ALT). ALT is genetically associated with somatic alterations in alpha-thalassemia/mental retardation X-linked (ATRX) and death domain-associated protein (DAXX) genes. Cells displaying ALT present distinctive features including C-circles made of telomeric DNA, long and heterogenous telomeric tracts, and telomeric DNA co-localized with promyelocytic leukemia (PML) bodies forming so-called ALT-associated PML bodies (APBs). Here, we identified mutations in ATRX and/or DAXX genes in an extensive collection of CRC samples including 119 patient-derived organoids (PDOs) and 232 established CRC cell lines. C-circles measured in CRC PDOs and cell lines showed low levels overall. We also observed that CRC PDOs and cell lines did not display a significant accumulation of APBs or long telomeres with no appreciable differences between wild-type and mutated ATRX/DAXX samples. Overall, our extensive analyses indicate that CRC is not prone to engage ALT, even when carrying genetic lesions in ATRX and/or DAXX, and support the notion that ATRX/DAXX genomic footprints are not reliable predictors of ALT.


Assuntos
Neoplasias Colorretais , Deficiência Intelectual , Telomerase , Talassemia alfa , Humanos , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , Homeostase do Telômero/genética , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Telomerase/genética , Telomerase/metabolismo , Mutação/genética , Linhagem Celular , Telômero/genética , Telômero/metabolismo , Organoides/metabolismo , Neoplasias Colorretais/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
7.
Front Oncol ; 13: 1130852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816936

RESUMO

High-grade mucinous colorectal cancer (HGM CRC) is particularly aggressive, prone to metastasis and treatment resistance, frequently accompanied by "signet ring" cancer cells. A sizeable fraction of HGM CRCs (20-40%) arises in the context of the Lynch Syndrome, an autosomal hereditary syndrome that predisposes to microsatellite instable (MSI) CRC. Development of patient-derived preclinical models for this challenging subtype of colorectal cancer represents an unmet need in oncology. We describe here successful propagation of preclinical models from a case of early-onset, MSI-positive metastatic colorectal cancer in a male Lynch syndrome patient, refractory to standard care (FOLFOX6, FOLFIRI-Panitumumab) and, surprisingly, also to immunotherapy. Surgical material from a debulking operation was implanted in NOD/SCID mice, successfully yielding one patient-derived xenograft (PDX). PDX explants were subsequently used to generate 2D and 3D cell cultures. Histologically, all models resembled the tumor of origin, displaying a high-grade mucinous phenotype with signet ring cells. For preclinical exploration of alternative treatments, in light of recent findings, we considered inhibition of the proteasome by bortezomib and of the related NEDD8 pathway by pevonedistat. Indeed, sensitivity to bortezomib was observed in mucinous adenocarcinoma of the lung, and we previously found that HGM CRC is preferentially sensitive to pevonedistat in models with low or absent expression of cadherin 17 (CDH17), a differentiation marker. We therefore performed IHC on the tumor and models, and observed no CDH17 expression, suggesting sensitivity to pevonedistat. Both bortezomib and pevonedistat showed strong activity on 2D cells at 72 hours and on 3D organoids at 7 days, thus providing valid options for in vivo testing. Accordingly, three PDX cohorts were treated for four weeks, respectively with vehicle, bortezomib and pevonedistat. Both drugs significantly reduced tumor growth, as compared to the vehicle group. Interestingly, while bortezomib was more effective in vitro, pevonedistat was more effective in vivo. Drug efficacy was further substantiated by a reduction of cellularity and of Ki67-positive cells in the treated tumors. These results highlight proteasome and NEDD8 inhibition as potentially effective therapeutic approaches against Lynch syndrome-associated HGM CRC, also when the disease is refractory to all available treatment options.

8.
Clin Cancer Res ; 28(17): 3874-3889, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881546

RESUMO

PURPOSE: Genomic instability is a hallmark of cancer and targeting DNA damage response (DDR) is emerging as a promising therapeutic strategy in different solid tumors. The effectiveness of targeting DDR in colorectal cancer has not been extensively explored. EXPERIMENTAL DESIGN: We challenged 112 cell models recapitulating the genomic landscape of metastatic colorectal cancer with ATM, ATR, CHK1, WEE1, and DNA-PK inhibitors, in parallel with chemotherapeutic agents. We focused then on ATR inhibitors (ATRi) and, to identify putative biomarkers of response and resistance, we analyzed at multiple levels colorectal cancer models highly sensitive or resistant to these drugs. RESULTS: We found that around 30% of colorectal cancers, including those carrying KRAS and BRAF mutations and unresponsive to targeted agents, are sensitive to at least one DDR inhibitor. By investigating potential biomarkers of response to ATRi, we found that ATRi-sensitive cells displayed reduced phospho-RPA32 foci at basal level, while ATRi-resistant cells showed increased RAD51 foci formation in response to replication stress. Lack of ATM and RAD51C expression was associated with ATRi sensitivity. Analysis of mutational signatures and HRDetect score identified a subgroup of ATRi-sensitive models. Organoids derived from patients with metastatic colorectal cancer recapitulated findings obtained in cell lines. CONCLUSIONS: In conclusion, a subset of colorectal cancers refractory to current therapies could benefit from inhibitors of DDR pathways and replication stress. A composite biomarker involving phospho-RPA32 and RAD51 foci, lack of ATM and RAD51C expression, as well as analysis of mutational signatures could be used to identify colorectal cancers likely to respond to ATRi.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dano ao DNA , Replicação do DNA , Proteína Quinase Ativada por DNA/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia
9.
Cancers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267504

RESUMO

BACKGROUND: oxaliplatin with fluoropyrimidine is a "mainstay" regarding the upfront treatment of metastatic colorectal cancer (mCRC). In contrast, the efficacy and safety of oxaliplatin-based regimens in late-care settings have been poorly reported. METHODS: we identified a real-world mCRC patient cohort who were re-treated with oxaliplatin, and in which clinicopathological features were retrospectively analyzed to identify efficacy-predictive determinants (RETROX-CRC study). RESULTS: of 2606 patients, 119 fulfilled the eligibility criteria. Oxaliplatin retreatment response rate (RR) and disease control rate (DCR) were 21.6% (CI 14.4-31.0%), and 57.8% (CI 47.7-67.4). A trend towards better RR and DCR was observed among patients who had first oxaliplatin in an adjuvant setting; a poorer outcome was observed if two or more intervening treatments were delivered. Median progression-free survival (PFS) was 5.1 months (95%CI 4.3-6.1), reducing to 4.0 months (95%CI 3.07-5.13) if oxaliplatin was readministered beyond third-line (HR 2.02; 1.25-3.25; p = 0.004). Safety data were retrieved in 65 patients (54.6%); 18.5% (12/65) and 7.7% (5/65) had G3-4 toxicities. Toxicities led to discontinuation in 34/119 (28.6%). CONCLUSIONS: oxaliplatin retreatment produced further RR in around one-fifth of patients and DCR 57.8%. Efficacy decreased in more pre-treated patients and around one-third of patients discontinued treatment due to adverse events. Translational studies improving patient selection are warranted.

11.
J Exp Clin Cancer Res ; 40(1): 185, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090508

RESUMO

Colorectal cancer (CRC) is a complex and heterogeneous disease, characterized by dismal prognosis and low survival rate in the advanced (metastatic) stage. During the last decade, the establishment of novel preclinical models, leading to the generation of translational discovery and validation platforms, has opened up a new scenario for the clinical practice of CRC patients. To bridge the results developed at the bench with the medical decision process, the ideal model should be easily scalable, reliable to predict treatment responses, and flexibly adapted for various applications in the research. As such, the improved benefit of novel therapies being tested initially on valuable and reproducible preclinical models would lie in personalized treatment recommendations based on the biology and genomics of the patient's tumor with the overall aim to avoid overtreatment and unnecessary toxicity. In this review, we summarize different in vitro and in vivo models, which proved efficacy in detection of novel CRC culprits and shed light into the biology and therapy of this complex disease. Even though cell lines and patient-derived xenografts remain the mainstay of colorectal cancer research, the field has been confidently shifting to the use of organoids as the most relevant preclinical model. Prioritization of organoids is supported by increasing body of evidence that these represent excellent tools worth further therapeutic explorations. In addition, novel preclinical models such as zebrafish avatars are emerging as useful tools for pharmacological interrogation. Finally, all available models represent complementary tools that can be utilized for precision medicine applications.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Organoides/efeitos dos fármacos , Medicina de Precisão , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/genética
12.
Cancer Discov ; 11(8): 1923-1937, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33837064

RESUMO

Targeted therapies, chemotherapy, and immunotherapy are used to treat patients with mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer. The clinical effectiveness of targeted therapy and chemotherapy is limited by resistance and drug toxicities, and about half of patients receiving immunotherapy have disease that is refractory to immune checkpoint inhibitors. Loss of Werner syndrome ATP-dependent helicase (WRN) is a synthetic lethality in dMMR/MSI-H cells. To inform the development of WRN as a therapeutic target, we performed WRN knockout or knockdown in 60 heterogeneous dMMR colorectal cancer preclinical models, demonstrating that WRN dependency is an almost universal feature and a robust marker for patient selection. Furthermore, models of resistance to clinically relevant targeted therapy, chemotherapy, and immunotherapy retain WRN dependency. These data show the potential of therapeutically targeting WRN in patients with dMMR/MSI-H colorectal cancer and support WRN as a therapeutic option for patients with dMMR/MSI-H cancers refractory to current treatment strategies. SIGNIFICANCE: We found that a large, diverse set of dMMR/MSI-H colorectal cancer preclinical models, including models of treatment-refractory disease, are WRN-dependent. Our results support WRN as a promising synthetic-lethal target in dMMR/MSI-H colorectal cancer tumors as a monotherapy or in combination with targeted agents, chemotherapy, or immunotherapy.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Neoplasias Colorretais/terapia , Reparo de Erro de Pareamento de DNA , Helicase da Síndrome de Werner/genética , Neoplasias Colorretais/genética , Tratamento Farmacológico , Humanos , Imunoterapia , Terapia de Alvo Molecular
13.
Cancer Discov ; 11(1): 126-141, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004339

RESUMO

On-target resistance to next-generation TRK inhibitors in TRK fusion-positive cancers is largely uncharacterized. In patients with these tumors, we found that TRK xDFG mutations confer resistance to type I next-generation TRK inhibitors designed to maintain potency against several kinase domain mutations. Computational modeling and biochemical assays showed that TRKAG667 and TRKCG696 xDFG substitutions reduce drug binding by generating steric hindrance. Concurrently, these mutations stabilize the inactive (DFG-out) conformations of the kinases, thus sensitizing these kinases to type II TRK inhibitors. Consistently, type II inhibitors impede the growth and TRK-mediated signaling of xDFG-mutant isogenic and patient-derived models. Collectively, these data demonstrate that adaptive conformational resistance can be abrogated by shifting kinase engagement modes. Given the prior identification of paralogous xDFG resistance mutations in other oncogene-addicted cancers, these findings provide insights into rational type II drug design by leveraging inhibitor class affinity switching to address recalcitrant resistant alterations. SIGNIFICANCE: In TRK fusion-positive cancers, TRK xDFG substitutions represent a shared liability for type I TRK inhibitors. In contrast, they represent a potential biomarker of type II TRK inhibitor activity. As all currently available type II agents are multikinase inhibitors, rational drug design should focus on selective type II inhibitor creation.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Neoplasias , Receptor trkA , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/genética
14.
Cancer Treat Rev ; 91: 102112, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091698

RESUMO

BACKGROUND: Oxaliplatin represents a main component of cytotoxic treatment regimens in colorectal cancer (CRC). Given its efficacy, oxaliplatin is frequently re-administered in the context of the continuum of care in metastatic CRC (mCRC). However, efficacy and tolerability of this therapeutic strategy has not been comprehensively assessed. METHODS: We performed a systematic review of the literature on September 19th 2020, according to PRISMA criteria 2009. The research was performed on PubMed, ASCO Meeting Library, ESMO library and ClinicalTrials.gov for citations or ongoing trials. RESULTS: 64 records were retrieved and 13 included in the systematic review: 8 full-text articles, 4 abstracts and 1 ongoing clinical trial. According to readministration timing, studies were classified as rechallenge/reintroduction (n = 8) or stop & go/intermittent therapeutic strategies (n = 4). The studies presented wide heterogeneity in terms of efficacy (Response Rate 6-31%; Disease Control Rate 39-79%; median Progression-Free Survival 3.1-7 months). Those patients who received retreatment after prior adjuvant oxaliplatin or exploiting a stop-&-go strategy appeared to achieve better outcomes. However, no formal comparisons on treatment outcomes were feasible. The most frequent grade 3 or higher adverse events were hematologic toxicities (5-27%), peripheral neuropathy (5-14%) and hypersensitivity reactions (5-20%). CONCLUSIONS: Retreatment with oxaliplatin for mCRC is practiced based on scarce and heterogeneous data indicating efficacy and manageable toxicity. The best strategy to exploit this approach remains to be defined, and the most promising research avenue to improve therapeutic index of oxaliplatin is represented by selection of responder patients whose tumors harbor molecular defects in the DNA damage repair pathway.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Oxaliplatina/efeitos adversos , Oxaliplatina/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/secundário , Humanos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Retratamento , Resultado do Tratamento
15.
Cancer Discov ; 10(8): 1129-1139, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430388

RESUMO

Most patients with KRAS G12C-mutant non-small cell lung cancer (NSCLC) experience clinical benefit from selective KRASG12C inhibition, whereas patients with colorectal cancer bearing the same mutation rarely respond. To investigate the cause of the limited efficacy of KRASG12C inhibitors in colorectal cancer, we examined the effects of AMG510 in KRAS G12C colorectal cancer cell lines. Unlike NSCLC cell lines, KRAS G12C colorectal cancer models have high basal receptor tyrosine kinase (RTK) activation and are responsive to growth factor stimulation. In colorectal cancer lines, KRASG12C inhibition induces higher phospho-ERK rebound than in NSCLC cells. Although upstream activation of several RTKs interferes with KRASG12C blockade, we identify EGFR signaling as the dominant mechanism of colorectal cancer resistance to KRASG12C inhibitors. The combinatorial targeting of EGFR and KRASG12C is highly effective in colorectal cancer cells and patient-derived organoids and xenografts, suggesting a novel therapeutic strategy to treat patients with KRAS G12C colorectal cancer. SIGNIFICANCE: The efficacy of KRASG12C inhibitors in NSCLC and colorectal cancer is lineage-specific. RTK dependency and signaling rebound kinetics are responsible for sensitivity or resistance to KRASG12C inhibition in colorectal cancer. EGFR and KRASG12C should be concomitantly inhibited to overcome resistance to KRASG12C blockade in colorectal tumors.See related commentary by Koleilat and Kwong, p. 1094.This article is highlighted in the In This Issue feature, p. 1079.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos SCID , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
16.
Cancers (Basel) ; 12(3)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183295

RESUMO

The long-term efficacy of the Epidermal Growth Factor Receptor (EGFR)-targeted antibody cetuximab in advanced colorectal cancer (CRC) patients is limited by the emergence of drug-resistant (persister) cells. Recent studies in other cancer types have shown that cells surviving initial treatment with targeted agents are often vulnerable to alterations in cell metabolism including oxidative stress. Vitamin C (VitC) is an antioxidant agent which can paradoxically trigger oxidative stress at pharmacological dose. Here we tested the hypothesis that VitC in combination with cetuximab could restrain the emergence of secondary resistance to EGFR blockade in CRC RAS/BRAF wild-type models. We found that addition of VitC to cetuximab impairs the emergence of drug persisters, limits the growth of CRC organoids, and significantly delays acquired resistance in CRC patient-derived xenografts. Mechanistically, proteomic and metabolic flux analysis shows that cetuximab blunts carbohydrate metabolism by blocking glucose uptake and glycolysis, beyond promoting slow but progressive ROS production. In parallel, VitC disrupts iron homeostasis and further increases ROS levels ultimately leading to ferroptosis. Combination of VitC and cetuximab orchestrates a synthetic lethal metabolic cell death program triggered by ATP depletion and oxidative stress, which effectively limits the emergence of acquired resistance to anti-EGFR antibodies. Considering that high-dose VitC is known to be safe in cancer patients, our findings might have clinical impact on CRC patients treated with anti-EGFR therapies.

17.
Sci Transl Med ; 12(532)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102933

RESUMO

Vitamin C (VitC) is known to directly impair cancer cell growth in preclinical models, but there is little clinical evidence on its antitumoral efficacy. In addition, whether and how VitC modulates anticancer immune responses is mostly unknown. Here, we show that a fully competent immune system is required to maximize the antiproliferative effect of VitC in breast, colorectal, melanoma, and pancreatic murine tumors. High-dose VitC modulates infiltration of the tumor microenvironment by cells of the immune system and delays cancer growth in a T cell-dependent manner. VitC not only enhances the cytotoxic activity of adoptively transferred CD8 T cells but also cooperates with immune checkpoint therapy (ICT) in several cancer types. Combination of VitC and ICT can be curative in models of mismatch repair-deficient tumors with high mutational burden. This work provides a rationale for clinical trials combining ICT with high doses of VitC.


Assuntos
Antineoplásicos , Melanoma , Animais , Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Imunoterapia , Camundongos , Microambiente Tumoral
18.
Clin Cancer Res ; 26(6): 1372-1384, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31831554

RESUMO

PURPOSE: Defects in the homologous recombination (HR) repair pathway are of clinical interest due to sensitivity of HR-deficient cells to PARP inhibitors. We were interested in defining PARP vulnerability in patients with metastatic colorectal cancer (mCRC) carrying KRAS and BRAF mutations who display poor prognosis, have limited therapeutic options, and represent an unmet clinical need. EXPERIMENTAL DESIGN: We tested colorectal cancer cell lines, patient-derived organoids (PDO), and patient-derived xenografts (PDX) enriched for KRAS and BRAF mutations for sensitivity to the PARP inhibitor olaparib, and the chemotherapeutic agents oxaliplatin and 5-fluorouracil (5-FU). Genomic profiles and DNA repair proficiency of colorectal cancer models were compared with pharmacologic response. RESULTS: Thirteen of 99 (around 13%) colorectal cancer cell lines were highly sensitive to clinically active concentrations of olaparib and displayed functional deficiency in HR. Response to PARP blockade was positively correlated with sensitivity to oxaliplatin in colorectal cancer cell lines as well as patient-derived organoids. Treatment of PDXs with olaparib impaired tumor growth and maintenance therapy with PARP blockade after initial oxaliplatin response delayed disease progression in mice. CONCLUSIONS: These results indicate that a colorectal cancer subset characterized by poor prognosis and limited therapeutic options is vulnerable to PARP inhibition and suggest that PDO-based drug-screening assays can be used to identify patients with colorectal cancer likely to benefit from olaparib. As patients with mCRC almost invariably receive therapies based on oxaliplatin, "maintenance" treatment with PARP inhibitors warrants further clinical investigation.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Oxaliplatina/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Reparo de DNA por Recombinação , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Science ; 366(6472): 1473-1480, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31699882

RESUMO

The emergence of drug resistance limits the efficacy of targeted therapies in human tumors. The prevalent view is that resistance is a fait accompli: when treatment is initiated, cancers already contain drug-resistant mutant cells. Bacteria exposed to antibiotics transiently increase their mutation rates (adaptive mutability), thus improving the likelihood of survival. We investigated whether human colorectal cancer (CRC) cells likewise exploit adaptive mutability to evade therapeutic pressure. We found that epidermal growth factor receptor (EGFR)/BRAF inhibition down-regulates mismatch repair (MMR) and homologous recombination DNA-repair genes and concomitantly up-regulates error-prone polymerases in drug-tolerant (persister) cells. MMR proteins were also down-regulated in patient-derived xenografts and tumor specimens during therapy. EGFR/BRAF inhibition induced DNA damage, increased mutability, and triggered microsatellite instability. Thus, like unicellular organisms, tumor cells evade therapeutic pressures by enhancing mutability.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Terapia de Alvo Molecular , Mutagênese , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Adaptação Biológica/genética , Regulação para Baixo , Humanos , Seleção Genética
20.
Clin Cancer Res ; 25(20): 6243-6259, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375513

RESUMO

PURPOSE: Patient-derived xenograft (PDX) models accurately recapitulate the tumor of origin in terms of histopathology, genomic landscape, and therapeutic response, but some limitations due to costs associated with their maintenance and restricted amenability for large-scale screenings still exist. To overcome these issues, we established a platform of 2D cell lines (xeno-cell lines, XL), derived from PDXs of colorectal cancer with matched patient germline gDNA available. EXPERIMENTAL DESIGN: Whole-exome and transcriptome sequencing analyses were performed. Biomarkers of response and resistance to anti-HER therapy were annotated. Dependency on the WRN helicase gene was assessed in MSS, MSI-H, and MSI-like XLs using a reverse genetics functional approach. RESULTS: XLs recapitulated the entire spectrum of colorectal cancer transcriptional subtypes. Exome and RNA-seq analyses delineated several molecular biomarkers of response and resistance to EGFR and HER2 blockade. Genotype-driven responses observed in vitro in XLs were confirmed in vivo in the matched PDXs. MSI-H models were dependent upon WRN gene expression, while loss of WRN did not affect MSS XLs growth. Interestingly, one MSS XL with transcriptional MSI-like traits was sensitive to WRN depletion. CONCLUSIONS: The XL platform represents a preclinical tool for functional gene validation and proof-of-concept studies to identify novel druggable vulnerabilities in colorectal cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Instabilidade de Microssatélites , Adulto , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Estudos de Coortes , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Feminino , Dosagem de Genes , Humanos , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Masculino , Camundongos , Pessoa de Meia-Idade , Medicina de Precisão , Cultura Primária de Células , RNA-Seq , Reto/patologia , Reto/cirurgia , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Resultado do Tratamento , Helicase da Síndrome de Werner/genética , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA