Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38459616

RESUMO

AIMS: This report documents the exposure of passengers and crew of a commercial international flight to the zoonotic pathogen Brucella canis after an infected dog aborted in the passenger cabin of the aircraft. This case demonstrates the challenges associated with brucellosis screening and the risks that airline personnel, airport employees and travellers face when animals with unrecognized zoonotic infections are transported. METHODS/RESULTS: The public health investigation of this case was conducted by the Centers for Disease Control, the Illinois Department of Health and the Illinois Department of Agriculture, in collaboration with a local veterinary clinic and several academic and federal diagnostic laboratories. It included an extensive diagnostic evaluation of the dam and aborted foetuses to confirm a diagnosis of canine brucellosis. Passengers, airline personnel and staff from the veterinary clinic where the dogs were treated underwent risk assessments, and clinic staff also received detailed guidance regarding infection prevention practices. CONCLUSIONS: Animal shelters and breeding programs are recommended to screen dogs routinely for brucellosis, but it is not unusual for domestic or imported animals to have unknown health histories, including the dog's brucellosis status, at the time of purchase, adoption, or re-homing. Testing recommendations and requirements vary by state, making it challenging for state public health and animal health agencies to monitor and respond appropriately. This case highlights the importance of Brucella spp. screening in sexually intact dogs prior to breeding, purchase, or domestic or international transportation of the dogs. The transportation of pregnant dogs may present a previously unrecognized public health threat in addition to contributing to unnecessary stress and health risks for pregnant animals.

2.
Emerg Infect Dis ; 29(9): 1789-1797, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610167

RESUMO

Brucellosis is a major public health concern worldwide, especially for persons living in resource-limited settings. Historically, an evidence-based estimate of the global annual incidence of human cases has been elusive. We used international public health data to fill this information gap through application of risk metrics to worldwide and regional at-risk populations. We performed estimations using 3 statistical models (weighted average interpolation, bootstrap resampling, and Bayesian inference) and considered missing information. An evidence-based conservative estimate of the annual global incidence is 2.1 million, significantly higher than was previously assumed. Our models indicate Africa and Asia sustain most of the global risk and cases, although areas within the Americas and Europe remain of concern. This study reveals that disease risk and incidence are higher than previously suggested and lie mainly within resource-limited settings. Clarification of both misdiagnosis and underdiagnosis is required because those factors will amplify case estimates.


Assuntos
Brucelose , Humanos , Teorema de Bayes , Incidência , África , Ásia , Brucelose/epidemiologia
3.
Front Microbiol ; 13: 1029199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338077

RESUMO

Brucella species are considered a significant cause of reproductive pathology in male and female animals. Importantly, Brucella melitensis can induce reproductive disease in humans. Reproductive pathogenesis and evaluation of newly developed countermeasures against brucellosis studies have traditionally utilized female animal models. However, any potential, new intervention for use in humans would need to be evaluated in both sexes. Therefore, animal models for male reproductive brucellosis are desperately needed to understand disease progression. Accordingly, we evaluated guinea pigs and mice using B. melitensis 16 M in an intratracheal model of inoculation at different stages of infection (peracute, acute, and chronic) with an emphasis on determining the effect to the male reproductive organs. Aerosol inoculation resulted in colonization of the reproductive organs (testicle, epididymis, prostate) in both species. Infection peaked during the peracute (1-week post-infection [p.i.]) and acute (2-weeks p.i.) stages of infection in the mouse in spleen, epididymis, prostate, and testicle, but colonization was poorly associated with inflammation. In the guinea pig, peak infection was during the acute stage (4-weeks p.i.) and resulted in inflammation that disrupted spermatogenesis chronically. To determine if vaccine efficacy could be evaluated using these models, males were vaccinated using subcutaneous injection with vaccine candidate 16 MΔvjbR at 109 CFU/100 µl followed by intratracheal challenge with 16 M at 107. Interestingly, vaccination efficacy varied between species and reproductive organs demonstrating the value of evaluating vaccine candidates in multiple models and sexes. Vaccination resulted in a significant reduction in colonization in the mouse, but this could not be correlated with a decrease in inflammation. Due to the ability to evaluate for both colonization and inflammation, guinea pigs seemed the better model not only for assessing host-pathogen interactions but also for future vaccine development efforts.

4.
Front Immunol ; 13: 959328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032120

RESUMO

Brucella canis is the cause of canine brucellosis, a globally distributed, zoonotic pathogen which primarily causes disease in dogs. B. canis is unique amongst the zoonotic Brucella spp. with its rough lipopolysaccharide, a trait typically associated with attenuation in gram-negative bacteria. Unfortunately, no vaccine is available against B. canis, and vaccine development is hampered by a limited understanding of the immune response required to combat it and the course of infection following a physiologically relevant, mucosal route of inoculation. To address these concerns and analyze the impact of the rough phenotype on the immune response, we infected mice intratracheally with rough B. canis or smooth B. melitensis or B. abortus. Bacterial colonization and histologic lesions were assessed in systemic target organs as well as locally in the lungs and draining mediastinal lymph node. Mice were also reinfected with Brucella following antibiotic treatment and cytokine production by T lymphocytes in the lung and spleen was assessed by flow cytometry to investigate the memory immune response. Despite its rough phenotype, B. canis established a persistent infection at the same level of colonization as the smooth strains. However, B. canis induced significantly less granulomatous inflammation in the spleen as well as a lack of bronchial-associated lymphoid tissue (BALT) hyperplasia in the lungs. These differences coincided with increased IL-10 and decreased IFN-γ in the spleen of B. canis-infected mice. Previous exposure to all Brucella strains provided protection against colonization following secondary challenge, although induction of IFN-γ by T lymphocytes was seen only in the lungs during B. canis infection while the smooth strains induced this cytokine in the spleen as well. Neither Brucella strain induced significant polyfunctional T lymphocytes, a potential immunomodulatory mechanism that appears to be independent of lipopolysaccharide phenotype.


Assuntos
Brucella canis , Brucelose , Memória Imunológica , Animais , Brucella abortus , Brucella melitensis , Brucelose/imunologia , Citocinas , Imunidade , Lipopolissacarídeos , Camundongos
5.
PLoS Negl Trop Dis ; 16(5): e0010404, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580076

RESUMO

BACKGROUND: For decades, human brucellosis has been recognized worldwide as a significant cause of morbidity, yet the annual incidence of this disease remains unknown. We analyzed this frequency, using international reports (2005-2019), identifying information gaps, and distinguishing a possible path forward. METHODOLOGY/PRINCIPAL FINDINGS: A novel approach to estimating the incidence of this disease was explored. We utilized annual health data extracted from the World Organization for Animal Health (OIE)-World Animal Health Information System (WAHIS) database, assessing the dataset completeness and representativeness of the data for the world population. Additionally, we assessed the reported country level human brucellosis case counts and the factors that influenced the observed changes over time. Our analysis revealed incomplete and unrepresentative information, preventing the estimation of annual human brucellosis case incidence at the global level. In the OIE-WAHIS database, only 48.4% of the required reports have been submitted as of 2019, with approximately 47.3% of the world population represented. Additionally, geographic regions were disproportionate in completeness, representativeness, and actual reported case counts. Africa and Asia constituted the majority of reported cases, while simultaneously submitting the lowest percentage of reports as well as covering the lowest percentage of their populations within those reports, when compared to the rest of the world. CONCLUSIONS/SIGNIFICANCE: The global annual frequency of human brucellosis cases remains elusive. Furthermore, there exists great heterogeneity in diagnostic, surveillance, and reporting systems worldwide, calling into question the validity of available information. This study reveals that the Neglected Zoonotic Disease priority status for brucellosis should be restored.


Assuntos
Brucelose , África , Animais , Brucelose/epidemiologia , Saúde Global , Humanos , Incidência , Zoonoses/epidemiologia
6.
Front Microbiol ; 12: 713157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335551

RESUMO

Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host-pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.

7.
J Vet Med Educ ; 48(6): 710-719, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33493094

RESUMO

An innovative training program entitled "AgSecure Africa ProgrammeTM" was developed in partnership with the South African Agricultural Research Council-Onderstepoort Veterinary Research (ARC-OVR) to train veterinarians, animal health technicians, researchers and laboratory personnel. Three blended courses consisting of both virtual and in-person delivery were provided with the intent of contributing to the better prevention, detection and control of infectious diseases of livestock and poultry of significant importance for the region with a strong emphasis on transboundary animal diseases. A "train the trainer" model of instruction was employed to equip participants with the ability to train and share knowledge with colleagues and small-holder farmers in their various communities and regions. The design of this program was to increase the capacity of veterinarians and veterinary diagnosticians to safely and accurately diagnose infectious livestock diseases and to also empower small-holder farmers with the knowledge needed to safely and securely manage their livestock and be a first line defense in the prevention and control of infectious livestock diseases. Quantitative and qualitative evaluations were used to measure the impact of the trainings which revealed significant increases in knowledge gains. Course materials were submitted and approved for accreditation by the South African Veterinary Council (SAVC) becoming the first international training program to achieve this. Approval of these courses led to licensed veterinarians and animal health technicians being awarded continuing professional development credits upon their successful completion of courses. A larger goal was to build training capacity, not only for South Africa, but also for the region.


Assuntos
Doenças dos Animais , Educação em Veterinária , Médicos Veterinários , Agricultura , Animais , Humanos , África do Sul
8.
J Vet Diagn Invest ; 33(2): 352-356, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33468036

RESUMO

In male dogs, Brucella canis frequently causes epididymitis, ultimately resulting in testicular atrophy and infertility. Although B. canis predominantly affects the epididymis, the misleading term "orchitis" is still commonly used by clinicians. Of additional concern, diagnosis in dogs remains challenging because of variable sensitivity and specificity of serologic assays and fluctuations in bacteremia levels in infected dogs, reducing the sensitivity of blood culture. We describe here the histologic lesions in the scrotal contents of 8 dogs suspected of being infected with B. canis and clinically diagnosed with orchitis. We explored the possibility of using immunohistochemistry (IHC) and real-time PCR (rtPCR) in formalin-fixed, paraffin-embedded (FFPE) tissues to detect the presence of B. canis. Epididymitis of variable chronicity was identified in all 8 dogs, with only 3 also exhibiting orchitis. Using rtPCR, the presence of B. canis was identified in 4 of 8 dogs, with 3 of these 4 dogs also positive by IHC. These results suggest that rtPCR and IHC are promising techniques that can be used in FFPE tissues to detect B. canis when other detection techniques are unavailable. Additionally, accurate recognition of epididymitis rather than orchitis in suspect cases could aid in accurate diagnosis.


Assuntos
Brucella canis/isolamento & purificação , Brucelose/veterinária , Doenças do Cão/diagnóstico , Epididimo/patologia , Testículo/patologia , Animais , Brucelose/diagnóstico , Cães , Formaldeído/química , Imuno-Histoquímica/veterinária , Masculino , Reação em Cadeia da Polimerase/veterinária
9.
J Vet Med Educ ; 48(3): 301-309, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32163020

RESUMO

Transboundary animal diseases (TADs) are livestock diseases characterized as highly contagious, fast-spreading, and capable of producing high morbidity and mortality. Accidental or intentional introduction of these diseases into the United States could devastate the economy, food security, and public health. Training of researchers, scientists and animal health workers is often limited to prevention and diagnosis with little emphasis on the importance of translating knowledge to the development of new products for the prevention, detection and control of outbreaks. The Bench to Shop™ training program was developed to fill this gap and applied an innovative blended-learning method through the use of an online platform, a 3-week experiential training, and a 1-month follow-up project. The program specifically targeted next-generation researchers, including PhD students, post-doctoral researchers, and early-career faculty. A total of 17 trainees, in two cohorts, were selected through a national and international recruitment process. Program evaluation consisted of focus groups, follow-up interviews, and pre- and post-tests of didactic material, revealing statistically significant gains in knowledge. Participants expanded their professional networks with leaders in industry and regulatory agencies related to production and/or commercialization of TAD products and deepened their commitment toward keeping our country safe from TADs. Post-program impacts on trainees included advancing products toward commercialization, partnering with connections made through the program, and demonstrating dedication to homeland security by pursuing product development related educational and career opportunities. Overall, results suggest this program provides an added value and should be readily available to the current and future workforce.


Assuntos
Doenças dos Animais , Educação em Veterinária , Doenças dos Animais/prevenção & controle , Animais , Humanos , Pesquisadores , Estudantes , Estados Unidos
10.
Vaccine ; 39(3): 617-625, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33328142

RESUMO

Small ruminant brucellosis is caused by the Gram negative cocci-bacillus Brucella (B.) melitensis, the most virulent Brucella species for humans. In goats and sheep, middle to late-term gestation abortion, stillbirths and the delivery of weak infected offspring are the characteristic clinical signs of the disease. Vaccination with the currently available Rev. 1 vaccine is the best option to prevent and control the disease, although it is far from ideal. In this study, we investigate the safety of the B. melitensis 16MΔvjbR strain during a 15-month period beginning at vaccination of young goats, impregnation, delivery and lactation. Forty, 4 to 6 months old, healthy female crossbreed goats were randomly divided into four groups (n = 10) and immunized subcutaneously with a single vaccine dose containing 1x109 CFU of B. melitensis 16MΔvjbR delivered in alginate microcapsules or non-encapsulated. Controls received empty capsules or the commercially available Rev.1 vaccine. Seven months post-vaccination, when animals were sexually mature, all goats were naturally bred using brucellosis-free males, and allowed to carry pregnancies to term. Blood samples to assess the humoral immune response were collected throughout the study. At two months post-delivery, all dams and their offspring were euthanized and a necropsy was performed to collect samples for bacteriology and histology. Interestingly, none of the animals that received the vaccine candidate regardless of the formulation exhibited any clinical signs associated with vaccination nor shed the vaccine strain through saliva, vagina or the milk. Gross and histopathologic changes in all nannies and offspring were unremarkable with no evidence of tissue colonization or vertical transmission to fetuses. Altogether, these data demonstrate that vaccination with the mutant strain 16MΔvjbR is safe for use in the non-pregnant primary host.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucelose , Doenças dos Ovinos , Animais , Brucelose/prevenção & controle , Brucelose/veterinária , Feminino , Cabras , Humanos , Gravidez , Ovinos
11.
PLoS One ; 15(9): e0239854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986759

RESUMO

Brucellosis is a zoonotic disease known to be endemic to parts of western and sub-Saharan Africa. However, the epidemiology for humans and animals remains largely unknown in many of these countries with Cameroon being a typical example. Despite common knowledge that brucellosis affects livestock, the actual number of infected animals remains unknown. Through a scoping review, the current known status of the disease is described. The aim is to ascertain relevant and publicly accessible research and knowledge of human and animal brucellosis in the country, and to provide an overview of the factors associated with its known persistence. Seroprevalence has been estimated and published in 12 separate instances (1 human; 9 cattle; 1 human and cattle; and 1 that includes cattle, pigs, and small ruminants), between 1982 and 2020, in 9 of the country's 10 geopolitical regions. In 1983, Brucella abortus and B. melitensis were isolated in cattle, but no further bacterial isolation has been published since. The seroprevalence from 196 total humans has ranged between 5.6% and 28.1%, and between 3.0% and 30.8% for 14,044 total cattle. As there is no ongoing surveillance program, it is not currently possible to identify the specific Brucella spp. that are endemic to the country and its regions. There are sufficient agricultural systems of cattle, pigs, goats, and sheep to sustain the presence of multiple Brucella spp. Surveillance information is the cornerstone of epidemiologic decision making, and is needed to direct policy makers, public health authorities, and veterinary services to appropriate actions. A combination of serological and molecular based diagnostics for surveillance is necessary to identify, quantify, and direct the appropriate public health interventions. Cameroon has an opportunity to build public and animal health infrastructure, leading the way for central Africa in the management and future eradication of brucellosis.


Assuntos
Brucella abortus/isolamento & purificação , Brucella melitensis/isolamento & purificação , Brucelose/epidemiologia , Brucelose/veterinária , Animais , Brucella abortus/imunologia , Brucella melitensis/imunologia , Brucelose/diagnóstico , Brucelose/microbiologia , Camarões/epidemiologia , Doenças Endêmicas/veterinária , Monitoramento Epidemiológico/veterinária , Humanos , Gado/microbiologia , Estudos Soroepidemiológicos , Zoonoses/epidemiologia , Zoonoses/microbiologia
12.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32690632

RESUMO

Reproductive failure is the hallmark of brucellosis in animals. An uncommon but important complication in pregnant women who become acutely infected with Brucella melitensis is spontaneous pregnancy loss or vertical transmission to the fetus. Unfortunately, the mechanism behind reproductive failure is still obscure, partially due to the lack of a proper study model. Recently, it was demonstrated that intratracheal (IT) inoculation of nonpregnant guinea pigs would replicate features of clinical disease in humans. To determine if IT inoculation would induce reproductive disease, guinea pigs were infected at mid-gestation and monitored daily for fever and abortions. Fever developed between day 14 to 18 postinoculation, and by 3 weeks postinoculation, 75% of pregnant guinea pigs experienced stillbirths or spontaneous abortions mimicking natural disease. Next, to investigate the guinea pig as a model for evaluating vaccine efficacy during pregnancy, nonpregnant guinea pigs were vaccinated with S19, 16MΔvjbR + Quil-A, or 100 µl PBS + Quil-A (as control). Guinea pigs were bred and vaccinated guinea pigs were challenged at mid-gestation with B. melitensis IT inoculation and monitored for fever and abortions. Vaccination with both vaccines prevented fever and protected against abortion. Together, this study indicates that pregnant guinea pigs are an appropriate animal model to study reproductive disease and offer an improved model to evaluate the ability of vaccine candidates to protect against a serious manifestation of disease.


Assuntos
Vacina contra Brucelose/administração & dosagem , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Modelos Animais de Doenças , Complicações Infecciosas na Gravidez/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Brucella melitensis/patogenicidade , Brucelose/microbiologia , Brucelose/patologia , Feminino , Cobaias , Humanos , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Placenta/microbiologia , Placenta/patologia , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/patologia , Vacinação
13.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32690635

RESUMO

Stealthy intracellular bacterial pathogens are known to establish persistent and sometimes lifelong infections. Some of these pathogens also have a tropism for the reproductive system, thereby increasing the risk of reproductive disease and infertility. To date, the pathogenic mechanism involved remains poorly understood. Here, we demonstrate that Brucella abortus, a notorious reproductive pathogen, has the ability to infect the nonpregnant uterus, sustain infection, and induce inflammatory changes during both acute and chronic stages of infection. In addition, we demonstrated that chronically infected mice had a significantly reduced number of pregnancies compared to naive controls. To investigate the immunologic mechanism responsible for uterine tropism, we explored the role of regulatory T cells (Tregs) in the pathogenesis of Brucella abortus infection. We show that highly suppressive CD4+FOXP3+TNFR2+ Tregs contribute to the persistence of Brucella abortus infection and that inactivation of Tregs with tumor necrosis factor receptor II (TNFR2) antagonistic antibody protected mice by significantly reducing bacterial burden both systemically and within reproductive tissues. These findings support a critical role of Tregs in the pathogenesis of persistence induced by intracellular bacterial pathogens, including B. abortus Results from this study indicate that adverse reproductive outcomes can occur as sequelae of chronic infection in nonpregnant animals and that fine-tuning Treg activity may provide novel immunotherapeutic and prevention strategies against intracellular bacterial infections such as brucellosis.


Assuntos
Brucella abortus/patogenicidade , Brucelose/imunologia , Fertilidade/fisiologia , Complicações Infecciosas na Gravidez/imunologia , Linfócitos T Reguladores/imunologia , Doença Aguda , Animais , Carga Bacteriana , Brucelose/microbiologia , Doença Crônica , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Baço/imunologia , Baço/microbiologia , Baço/patologia , Útero/imunologia , Útero/microbiologia , Útero/patologia
14.
mSphere ; 5(3)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434839

RESUMO

Brucella canis is a Gram-negative, facultative intracellular bacterium and the causative agent of canine brucellosis, a highly contagious disease of dogs that can be transmitted to humans. Unfortunately, no vaccine is available to prevent infection. We recently characterized the kinetics of B. canis infection in the mouse model, establishing the required dose necessary to achieve systemic infection. The objective of this study was to investigate the utility of the mouse model in assessing canine brucellosis vaccine candidates and to subsequently investigate the safety and efficacy of a live attenuated vaccine, the B. canis RM6/66 ΔvjbR strain. Mice vaccinated with a dose of 109 CFU of the vaccine strain by both intraperitoneal and subcutaneous routes were afforded significant protection against organ colonization and development of histopathologic lesions following intraperitoneal challenge. Addition of an adjuvant or a booster dose 2 weeks following initial vaccination did not alter protection levels. Vaccination also resulted in a robust humoral immune response in mice, and B. canis RM6/66 ΔvjbR was capable of activating canine dendritic cells in vitro These data demonstrate that the B. canis RM6/66 ΔvjbR strain shows promise as a vaccine for canine brucellosis and validates the mouse model for future vaccine efficacy studies.IMPORTANCE Canine brucellosis, caused by Brucella canis, is the primary cause of reproductive failure in dogs and represents a public health concern due to its zoonotic nature. Cases in dogs in the United States have been increasing due to the persistent nature of the bacterium, deficiencies in current diagnostic testing, and, most importantly, the lack of a protective vaccine. Current estimates place the seroprevalence of B. canis in the southern United States at 7% to 8%, but with the unprecedented rates of animals moving across state and international borders and the lack of federal regulations in regard to testing, the true seroprevalence of B. canis in the United States may very well be higher. Vaccination represents the most effective method of brucellosis control and, in response to the demand for a vaccine against B. canis, we have developed the live attenuated B. canis RM6/66 ΔvjbR vaccine strain capable of protecting mice against challenge.


Assuntos
Anticorpos Antibacterianos/sangue , Vacina contra Brucelose/imunologia , Brucella canis/imunologia , Brucelose/prevenção & controle , Imunidade Humoral , Adjuvantes Imunológicos , Animais , Brucelose/imunologia , Modelos Animais de Doenças , Feminino , Injeções Intraperitoneais , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Estudos Soroepidemiológicos , Baço/microbiologia , Vacinas Atenuadas/imunologia
15.
PLoS Negl Trop Dis ; 14(5): e0008071, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32437346

RESUMO

Brucellosis is a bacterial endemic zoonotic disease of global significance with detrimental impacts on public health and food animal production. It is caused by Brucella spp., an expanding group of pathogens able to infect various host species. Bovines and small ruminants, which excrete the bacteria in milk and in reproductive discharges, are major sources of infection for humans and other animals. Contact with contaminated animals and consumption of unpasteurized dairy products are the main routes for human infection. In spite of the considerable progress of knowledge gained and success achieved in brucellosis control in the developed world, this disease continues to be an important burden in the Middle East (ME). Common risk factors implicated in the difficulty and complexity of brucellosis control within the region include (1) social and political instabilities; (2) insufficient resources and infrastructure for appropriate diagnosis, reporting, and implementation of control measures; (3) variation of livestock husbandry systems and their commingling with other livestock and wildlife; and (4) traditional cultural practices, including consumption of unpasteurized dairy products. Development of core interdisciplinary competencies is required for a true One Health-based endeavor against the disease. National awareness and educational programs addressing all population sectors from consumers to decision-makers seem to be the next logical, sustainable, and economically viable approach toward improving disease status in this region. In the present review, we describe the current situation of brucellosis in the ME, focusing on the major limitations and shortcomings regarding disease control. We propose a regional approach toward public awareness of brucellosis as the first step in mitigating the disease and discuss the potential benefits, and components of such a strategy, which can further be used as a model for other endemic zoonotic diseases.


Assuntos
Brucelose/epidemiologia , Brucelose/veterinária , Animais , Brucella/classificação , Brucella/genética , Brucella/isolamento & purificação , Brucella/fisiologia , Brucelose/diagnóstico , Brucelose/microbiologia , Humanos , Gado/microbiologia , Oriente Médio/epidemiologia , Saúde Única , Zoonoses/epidemiologia , Zoonoses/microbiologia , Zoonoses/transmissão
16.
mSphere ; 5(3)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404509

RESUMO

As a natural host species for Brucella melitensis, pregnant sheep offer an ideal model to evaluate vaccine candidates for safety. B. melitensis strain Rev. 1 has been used almost exclusively to prevent brucellosis in small ruminants, but it causes abortions when given to pregnant animals. To evaluate the comparative safety of the candidate Brucella melitensis 16MΔvjbR, pregnant sheep (n = 6) were vaccinated subcutaneously with 1 × 1010 CFU/ml of 16MΔvjbR or 1 × 109 CFU/ml Rev. 1 at a highly susceptible stage of gestation (approximately 70 days). 16MΔvjbR resulted in only 1 abortion (1 of 6) compared with 4 of 6 (66.7%) abortions in the Rev. 1 cohort. The placenta was evaluated by culture to determine if vaccination resulted in colonization. As another measure of safety, effects of B. melitensis on the fetus/offspring (vertical transmission) was evaluated by culture and histopathology of fetal tissues to determine if vaccination prevented infection of the fetus. Vaccination with 16MΔvjbR resulted in less vertical transmission than Rev. 1. To determine if vaccination was efficacious and could reduce tissue colonization in sheep, the same cohort of sheep were challenged 5 weeks postpartum by conjunctival inoculation with 1 × 107 CFU/ml B. melitensis Protection was similar between Rev. 1 and 16MΔvjbR, with no statistical difference in colonization in the target organs. Overall, the 16MΔvjbR vaccine was considered safer than Rev. 1 based on a reduced number of abortions and limited infection in the offspring. Future experiments are needed to further refine the vaccine dose to increase the safety margin and to evaluate protection in pregnant ewes.IMPORTANCE Brucellosis is one of the most commonly reported zoonotic disease with a worldwide distribution. Of the 12 Brucella species, Brucella melitensis is considered the most virulent and causes reproductive failure (abortions/stillbirths) in small ruminants, which can spread the disease to other animals or to humans. Vaccination of small ruminants is a key measure used to protect both human and animal health. However, the commercially available live-attenuated vaccine for Brucella melitensis Rev. 1 retains virulence and can cause disease in animals and humans. In order to evaluate the safety and efficacy in sheep, we vaccinated pregnant sheep with 16MΔvjbR Our results indicate that 16MΔvjbR was safer for use during pregnancy, provided a similar level of protection as Rev. 1, and could be considered an improved candidate for future vaccine trials.


Assuntos
Vacina contra Brucelose/imunologia , Brucella melitensis/genética , Brucella melitensis/imunologia , Brucelose/veterinária , Doenças dos Ovinos/prevenção & controle , Vacinação/veterinária , Animais , Vacina contra Brucelose/administração & dosagem , Brucelose/prevenção & controle , Túnica Conjuntiva/microbiologia , Modelos Animais de Doenças , Feminino , Gravidez , Ovinos/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
17.
Front Public Health ; 8: 76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32232023

RESUMO

Background: The scientific evidence of the health risks associated with the consumption of raw milk has been known for a long time. However, less clear is the impact of acquiring infectious diseases from raw milk consumption in the United States (US) due to incomplete reporting of cases and the complex factors associated with the sale and consumption of raw milk. Investigations of this current study focused on human brucellosis, one of the infectious diseases commonly acquired through the consumption of raw milk and milk products, and which continues to be a public health threat worldwide. Methodology: A qualitative systematic review of the sources of opinions that contribute to the increased trend of raw milk sales and consumption in the US was conducted. Results: Interestingly, opinions about the sale of raw milk and/or the benefits arising from its consumption varied by US region, with the proportion of messages supporting raw milk consumption being highest in the Northeast compared to other US regions. Several evidence gaps and factors that possibly contribute to the increased prevalence of raw milk-acquired brucellosis were identified including inadequate monitoring of the raw milk sales process and lack of approved diagnostic methods for validating the safety of raw milk for human consumption. Conclusions: The unavailability of data specifying brucellosis cases acquired from raw milk consumption have precluded the direct association between raw milk and increased brucellosis prevalence in the United States. Nevertheless, the evidence gaps identified in this study demonstrate the need for intensified surveillance of raw-milk acquired infectious diseases including human brucellosis; establishment of safety and quality control measures for the process of selling raw milk; and design of an effective strategy for the prevention of raw milk-acquired infectious diseases including brucellosis. Overall, for the first time, this study has not only shown the gaps in evidence that require future investigations, but also, variations in the perception of raw milk consumption that may impact disease acquisition in different US regions.


Assuntos
Brucelose , Leite , Animais , Brucelose/epidemiologia , Comércio , Humanos , Prevalência , Saúde Pública , Estados Unidos/epidemiologia
18.
Vet Pathol ; 57(2): 290-295, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32081085

RESUMO

Prolonged exposure to water, known as immersion foot syndrome in humans, is a phenomenon first described in soldiers during World War I and characterized by dermal ischemic necrosis. In this report, we describe the pathologic findings of a condition resembling immersion foot syndrome in 5 horses and 1 donkey with prolonged floodwater exposure during Hurricane Harvey. At necropsy, all animals had dermal defects ventral to a sharply demarcated "water line" along the lateral trunk. In 5 animals, histologic examination revealed moderate to severe perivascular dermatitis with vasculitis and coagulative necrosis consistent with ischemia. The severity of the lesions progressed from ventral trunk to distal limbs and became more pronounced in the chronic cases. The pathophysiology of immersion foot syndrome is multifactorial and results from changes in the dermal microvasculature leading to thrombosis and ischemia. Prompt recognition of this disease may lead to appropriate patient management and decreased morbidity.


Assuntos
Dermatite/veterinária , Doenças dos Cavalos/patologia , Pé de Imersão/veterinária , Isquemia/veterinária , Trombose/veterinária , Vasculite/veterinária , Animais , Tempestades Ciclônicas , Dermatite/patologia , Medicina de Desastres , Equidae , Feminino , Inundações , Cavalos , Pé de Imersão/patologia , Masculino , Microvasos/patologia , Necrose/veterinária , Pele/patologia , Vasculite/patologia
19.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31932325

RESUMO

Osteoarticular disease is a frequent complication of human brucellosis. Vaccination remains a critical component of brucellosis control, but there are currently no vaccines for use in humans, and no in vitro models for assessing the safety of candidate vaccines in reference to the development of bone lesions currently exist. While the effect of Brucella infection on osteoblasts has been extensively evaluated, little is known about the consequences of osteoclast infection. Murine bone marrow-derived macrophages were derived into mature osteoclasts and infected with B. abortus 2308, the vaccine strain S19, and attenuated mutants S19vjbR and B. abortusΔvirB2 While B. abortus 2308 and S19 replicated inside mature osteoclasts, the attenuated mutants were progressively killed, behavior that mimics infection kinetics in macrophages. Interestingly, B. abortus 2308 impaired the growth of osteoclasts without reducing resorptive activity, while osteoclasts infected with B. abortus S19 and S19vjbR were significantly larger and exhibited enhanced resorption. None of the Brucella strains induced apoptosis or stimulated nitric oxide or lactose dehydrogenase production in mature osteoclasts. Finally, infection of macrophages or osteoclast precursors with B. abortus 2308 resulted in generation of smaller osteoclasts with decreased resorptive activity. Overall, Brucella exhibits similar growth characteristics in mature osteoclasts compared to the primary target cell, the macrophage, but is able to impair the maturation and alter the resorptive capacity of these cells. These results suggest that osteoclasts play an important role in osteoarticular brucellosis and could serve as a useful in vitro model for both analyzing host-pathogen interactions and assessing vaccine safety.


Assuntos
Vacina contra Brucelose/efeitos adversos , Brucella abortus/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Osteoartrite/fisiopatologia , Osteoclastos/imunologia , Osteoclastos/microbiologia , Animais , Reabsorção Óssea , Vacina contra Brucelose/administração & dosagem , Proliferação de Células , Células Cultivadas , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Osteoclastos/fisiologia
20.
Front Vet Sci ; 7: 620462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490140

RESUMO

Babesiosis is a worldwide, tick-borne disease of economic importance in livestock caused by Babesia spp., which are hemoparasitic piroplasms that target the host erythrocytes. Cattle, dogs, small ruminants, and wild ruminants are the species most commonly affected, while in cats, horses, and pigs, it is less frequently reported. Although babesiosis has been observed worldwide, porcine babesiosis remains an uncommon disease with a very limited number of cases reported. Here, we describe a case in a 12-year old pot-bellied pig from South Africa that died after a history of anorexia and reluctance to rise for 2 days. A complete necropsy, blood smear cytology, reverse line blot (RLB) hybridization and 18S rRNA sequencing were performed. Numerous Babesia spp. hemoparasites and a moderate regenerative anemia were identified on blood smear, and a urine dipstick test yielded 4+ heme. Diffuse icterus and splenomegaly were observed upon gross examination. Histopathology revealed hemoglobin casts within renal tubules and collecting ducts, pulmonary edema, splenic congestion, and intrahepatic cholestasis. BLASTN homology of the 18SrRNA sequence revealed a 100% identity to the published sequence of Babesia sp. Suis isolated from pigs in Italy. This case of babesiosis in a pig highlights the clinical manifestations and gross and pathological findings of porcine babesiosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA