Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Angew Chem Int Ed Engl ; : e202413562, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39450584

RESUMO

A BRET system is described, in which Nanoluciferase was fused to the lipid transfer protein CERT for efficient energy transfer to a Nile red-labeled ceramide, which is either directly bound to CERT or transported to the adjacent Golgi membrane. Bulk formation of sphingomyelin, a major plasma membrane component in mammals, is dependent on CERT-mediated transfer of its predecessor ceramide. CERT is considered a promising drug target but no direct cell-based methods exist to efficiently identify inhibitors. The utility off the method was demonstrated by a library of 140 derivatives of the CERT inhibitor HPA-12. These were obtained in a combinatorial synthesis using solid-phase transacylation. Screening of the library led to six compounds that were picked and confirmed to be superior to HPA-12 in a subsequent dose-response study and also in an orthogonal lipidomics analysis.

2.
Future Microbiol ; 19(15): 1293-1307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39235058

RESUMO

Aim: To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'PfMFSDT') as a drug transporter, using Candida glabrata for orthologous protein expression.Methods: Complementary Determining Sequence encoding PfMFSDT was integrated into the genome of genetically engineered C. glabrata strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.Results & conclusion: The modified C. glabrata strain exhibited plasma membrane localization of PfMFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of Plasmodium falciparum highlight their antimalarial properties. This study proposes PfMFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.


[Box: see text].


Assuntos
Antifúngicos , Antimaláricos , Candida glabrata , Proteínas de Membrana Transportadoras , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Candida glabrata/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Itraconazol/farmacologia , Cetoconazol/farmacologia , Humanos , Membrana Celular/metabolismo
3.
Nat Commun ; 15(1): 7456, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198435

RESUMO

Sphingomyelin is a key molecule of sphingolipid metabolism, and its enzymatic breakdown is associated with various infectious diseases. Here, we introduce trifunctional sphingomyelin derivatives that enable the visualization of sphingomyelin distribution and sphingomyelinase activity in infection processes. We demonstrate this by determining the activity of a bacterial sphingomyelinase on the plasma membrane of host cells using a combination of Förster resonance energy transfer and expansion microscopy. We further use our trifunctional sphingomyelin probes to visualize their metabolic state during infections with Chlamydia trachomatis and thereby show that chlamydial inclusions primarily contain the cleaved forms of the molecules. Using expansion microscopy, we observe that the proportion of metabolized molecules increases during maturation from reticulate to elementary bodies, indicating different membrane compositions between the two chlamydial developmental forms. Expansion microscopy of trifunctional sphingomyelins thus provides a powerful microscopy tool to analyze sphingomyelin metabolism in cells at nanoscale resolution.


Assuntos
Membrana Celular , Chlamydia trachomatis , Esfingomielina Fosfodiesterase , Esfingomielinas , Esfingomielinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Chlamydia trachomatis/metabolismo , Humanos , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HeLa , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , Microscopia/métodos
4.
Bioorg Chem ; 139: 106747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531819

RESUMO

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Assuntos
Ceramidas , Ceramidase Neutra , Domínio Catalítico , Ceramidas/química , Ceramidase Neutra/antagonistas & inibidores , Esfingosina/química
5.
iScience ; 26(5): 106637, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192974

RESUMO

Cold shock proteins are characterized by the presence of one or more cold shock domains that bestow them with nucleic acid binding ability. Although cold shock proteins are well characterized in bacteria, plants and humans, there is no information on their existence and role in malaria parasite. Here, we have identified and delineated the function of a cold shock protein of Plasmodium falciparum (Pf) 'PfCoSP'. We demonstrate that PfCoSP exhibits nucleic acid binding properties and regulates gene expression. PfCoSP promotes microtubule assembly by interacting with Pf α/ß tubulin. We identified a human cold shock protein LIN28A inhibitor 'LI71' as a binding partner of PfCoSP which inhibited PfCoSP-DNA and α/ß tubulin interactions and, also inhibited the development of asexual blood stages and gametocyte stage of malaria parasite. Because PfCoSP is essential for parasite survival, characterization of its interacting partners may form the basis for development of future anti-malarials.

6.
Cereb Cortex ; 33(3): 844-864, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35296883

RESUMO

Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.


Assuntos
Emoções , Esfingomielina Fosfodiesterase , Masculino , Camundongos , Animais , Feminino , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Consumo de Bebidas Alcoólicas , Ansiedade/metabolismo , Encéfalo/metabolismo , Etanol
7.
J Phys Chem C Nanomater Interfaces ; 126(31): 13237-13246, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35983312

RESUMO

Due to the great potential of surface-enhanced Raman scattering (SERS) as local vibrational probe of lipid-nanostructure interaction in lipid bilayers, it is important to characterize these interactions in detail. The interpretation of SERS data of lipids in living cells requires an understanding of how the molecules interact with gold nanostructures and how intermolecular interactions influence the proximity and contact between lipids and nanoparticles. Ceramide, a sphingolipid that acts as important structural component and regulator of biological function, therefore of interest to probing, lacks a phosphocholine head group that is common to many lipids used in liposome models. SERS spectra of liposomes of a mixture of ceramide, phosphatidic acid, and phosphatidylcholine, as well as of pure ceramide and of the phospholipid mixture are reported. Distinct groups of SERS spectra represent varied contributions of the choline, sphingosine, and phosphate head groups and the structures of the acyl chains. Spectral bands related to the state of order of the membrane and moreover to the amide function of the sphingosine head groups indicate that the gold nanoparticles interact with molecules involved in different intermolecular relations. While cryogenic electron microscopy shows the formation of bilayer liposomes in all preparations, pure ceramide was found to also form supramolecular, concentric stacked and densely packed lamellar, nonliposomal structures. That the formation of such supramolecular assemblies supports the intermolecular interactions of ceramide is indicated by the SERS data. The unique spectral features that are assigned to the ceramide-containing lipid model systems here enable an identification of these molecules in biological systems and allow us to obtain information on their structure and interaction by SERS.

8.
Eur Respir J ; 60(4)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35450969

RESUMO

BACKGROUND: Prostaglandin E2 (PGE2) increases pulmonary vascular permeability by activation of the PGE2 receptor 3 (EP3), which may explain adverse pulmonary effects of the EP1/EP3 receptor agonist sulprostone in patients. In addition, PGE2 contributes to pulmonary oedema in response to platelet-activating factor (PAF). PAF increases endothelial permeability by recruiting the cation channel transient receptor potential canonical 6 (TRPC6) to endothelial caveolae via acid sphingomyelinase (ASMase). Yet, the roles of PGE2 and EP3 in this pathway are unknown. We hypothesised that EP3 receptor activation may increase pulmonary vascular permeability by activation of TRPC6, and thus, synergise with ASMase-mediated TRPC6 recruitment in PAF-induced lung oedema. METHODS: In isolated lungs, we measured increases in endothelial calcium (ΔCa2+) or lung weight (Δweight), and endothelial caveolar TRPC6 abundance as well as phosphorylation. RESULTS: PAF-induced ΔCa2+ and Δweight were attenuated in EP3-deficient mice. Sulprostone replicated PAF-induced ΔCa2+ and Δweight which were blocked by pharmacological/genetic inhibition of TRPC6, ASMase or Src-family kinases (SrcFK). PAF, but not sulprostone, increased TRPC6 abundance in endothelial caveolae. Immunoprecipitation revealed PAF- and sulprostone-induced tyrosine-phosphorylation of TRPC6 that was prevented by inhibition of phospholipase C (PLC) or SrcFK. PLC inhibition also blocked sulprostone-induced ΔCa2+ and Δweight, as did inhibition of SrcFK or inhibitory G-protein (Gi) signalling. CONCLUSIONS: EP3 activation triggers pulmonary oedema via Gi-dependent activation of PLC and subsequent SrcFK-dependent tyrosine phosphorylation of TRPC6. In PAF-induced lung oedema, this TRPC6 activation coincides with ASMase-dependent caveolar recruitment of TRPC6, resulting in rapid endothelial Ca2+ influx and barrier failure.


Assuntos
Edema Pulmonar , Animais , Cálcio/metabolismo , Edema , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Pulmão/metabolismo , Camundongos , Fator de Ativação de Plaquetas , Esfingomielina Fosfodiesterase , Canal de Cátion TRPC6 , Fosfolipases Tipo C/metabolismo , Tirosina , Quinases da Família src
9.
Molecules ; 27(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268738

RESUMO

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Assuntos
Artemisia , Proteases 3C de Coronavírus , Flavonoides , SARS-CoV-2 , Animais , Humanos , Masculino , Ratos , Artemisia/química , Artemisia/metabolismo , Sítios de Ligação , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Teoria da Densidade Funcional , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Flavonoides/farmacologia , Dose Letal Mediana , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/enzimologia , SARS-CoV-2/isolamento & purificação , Pele/efeitos dos fármacos , Pele/patologia
10.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209006

RESUMO

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of -18.86 and -18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.


Assuntos
Artemisia/química , COVID-19/enzimologia , Cromonas/química , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Tratamento Farmacológico da COVID-19
11.
Angew Chem Int Ed Engl ; 61(2): e202109967, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34668624

RESUMO

Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases. However, due to their hydrophobic nature, no specific small molecule inhibitors have been reported. We present the discovery and mechanism of action of the first drug-like inhibitors of alkaline ceramidase 3 (ACER3). In particular, we chemically engineered novel fluorescent ceramide substrates enabling screening of large compound libraries and characterized enzyme:inhibitor interactions using mass spectrometry and MD simulations. In addition to revealing a new paradigm for inhibition of lipid metabolising enzymes with non-lipidic small molecules, our data lay the ground for targeting ACER3 in drug discovery efforts.


Assuntos
Ceramidases
12.
Dev Cell ; 56(22): 3128-3145.e15, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34762852

RESUMO

Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Esfingolipídeos/farmacologia , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Vasos Linfáticos/efeitos dos fármacos , Camundongos , Organogênese/fisiologia , Proteínas Repressoras/fisiologia
13.
Mol Psychiatry ; 26(12): 7403-7416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34584229

RESUMO

Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone-brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental-physical co-morbidity trias of alcohol abuse-depression/anxiety-bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental-physical co-morbidity trias.


Assuntos
Alcoolismo , Doenças Ósseas , Transtorno Depressivo Maior , Esfingomielina Fosfodiesterase , Alcoolismo/genética , Animais , Doenças Ósseas/genética , Comorbidade , Transtorno Depressivo Maior/genética , Humanos , Camundongos , Morbidade , Esfingomielina Fosfodiesterase/genética
14.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360937

RESUMO

Sphingolipids are ubiquitous in eukaryotic plasma membranes and play major roles in human and animal physiology and disease. This class of lipids is usually defined as being derivatives of sphingosine, a long-chain 1,3-dihydroxy-2-amino alcohol. Various pathological conditions such as diabetes or neuropathy have been associated with changes in the sphingolipidome and an increased biosynthesis of structurally altered non-canonical sphingolipid derivatives. These unusual or non-canonical sphingolipids hold great promise as potential diagnostic markers. However, due to their low concentrations and the unavailability of suitable standards, the research to explore the secret of this class of 'Sphinx' lipids is ultimately hampered. Therefore, the development of efficient and facile syntheses of standard compounds is a key endeavor. Here, we present various chemical approaches for stereoselective synthesis and in-depth chemical characterization of a set of novel sphingoid bases which were recently utilized as valuable tools to explore the metabolism and biophysical properties of sphingolipids, but also to develop efficient analytical methods for their detection and quantification.


Assuntos
Esfingolipídeos , Biomarcadores/química , Esfingolipídeos/síntese química , Esfingolipídeos/química
15.
Front Bioeng Biotechnol ; 9: 676900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434924

RESUMO

The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has become a powerful eukaryotic expression platform for biopharmaceutical and biotechnological applications on both laboratory and industrial scales. Despite the fundamental role that artificial transcription factors (ATFs) play in the orthogonal control of gene expression in synthetic biology, a limited number of ATFs are available for P. pastoris. To establish orthogonal regulators for use in P. pastoris, we characterized ATFs derived from Arabidopsis TFs. The plant-derived ATFs contain the binding domain of TFs from the plant Arabidopsis thaliana, in combination with the activation domains of yeast GAL4 and plant EDLL and a synthetic promoter harboring the cognate cis-regulatory motifs. Chromosomally integrated ATFs and their binding sites (ATF/BSs) resulted in a wide spectrum of inducible transcriptional outputs in P. pastoris, ranging from as low as 1- to as high as ∼63-fold induction with only small growth defects. We demonstrated the application of ATF/BSs by generating P. pastoris cells that produce ß-carotene. Notably, the productivity of ß-carotene in P. pastoris was ∼4.8-fold higher than that in S. cerevisiae, reaching ∼59% of the ß-carotene productivity obtained in a S. cerevisiae strain optimized for the production of the ß-carotene precursor, farnesyl diphosphate, by rewiring the endogenous metabolic pathways using plant-derived ATF/BSs. Our data suggest that plant-derived regulators have a high degree of transferability from S. cerevisiae to P. pastoris. The plant-derived ATFs, together with their cognate binding sites, powerfully increase the repertoire of transcriptional regulatory modules for the tuning of protein expression levels required in metabolic engineering or synthetic biology in P. pastoris.

16.
Bioorg Med Chem ; 44: 116303, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280850

RESUMO

Recently, FRET probes for acid sphingomyelinase (ASM) have enabled the observation of enzyme activity in intact cells for the first time. Here we present an ASM FRET probe specifically optimized for 2-photon excitation. To facilitate probe characterization and comparison to the previous probe, we mixed the two intact probes with defined amounts of the probes' ceramide cleavage products and mounted them on lipid beads. Directly excited NBD FRET acceptor fluorescene proved to be a useful means of reference and showed that the new probe is brighter, albeit only moderately, than the previous one. The new probe was then used to detect inhibition by various ASM inhibitors microscopically for the first time. Also in cells, directly excited acceptor fluorescence proved to be a useful parameter in addition to FRET to visualize inhibition of ASM.


Assuntos
Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Fótons , Esfingomielina Fosfodiesterase/análise , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Esfingomielina Fosfodiesterase/metabolismo , Relação Estrutura-Atividade
17.
Biochim Biophys Acta Biomembr ; 1863(8): 183628, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915167

RESUMO

1-deoxy-sphingolipids, also known as atypical sphingolipids, are directly implicated in the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type 2. The mechanisms underlying their patho-physiological actions are yet to be elucidated. Accumulating evidence suggests that the biological actions of canonical sphingolipids are triggered by changes promoted on membrane organization and biophysical properties. However, little is known regarding the biophysical implications of atypical sphingolipids. In this study, we performed a comprehensive characterization of the effects of the naturally occurring 1-deoxy-dihydroceramide, 1-deoxy-ceramideΔ14Z and 1-deoxymethyl-ceramideΔ3E in the properties of a fluid membrane. In addition, to better define which structural features determine sphingolipid ability to form ordered domains, the synthetic 1-O-methyl-ceramideΔ4E and 1-deoxy-ceramideΔ4E were also studied. Our results show that natural and synthetic 1-deoxy(methyl)-sphingolipids fail to laterally segregate into ordered domains as efficiently as the canonical C16-ceramide. The impaired ability of atypical sphingolipids to form ordered domains was more dependent on the presence, position, and configuration of the sphingoid base double bond than on the structure of its C1 functional group, due to packing constraints introduced by an unsaturated backbone. Nonetheless, absence of a hydrogen bond donor and acceptor group at the C1 position strongly reduced the capacity of atypical sphingolipids to form gel domains. Altogether, the results showed that 1-deoxy(methyl)-sphingolipids induce unique changes on the biophysical properties of the membranes, suggesting that these alterations might, in part, trigger the patho-biological actions of these lipids.


Assuntos
Ceramidas/química , Lipídeos/química , Membranas/química , Esfingolipídeos/química , Biofísica , Ceramidas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Membranas/metabolismo , Esfingolipídeos/metabolismo
18.
SLAS Discov ; 26(1): 113-121, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734807

RESUMO

There is interest in developing inhibitors of human neutral ceramidase (nCDase) because this enzyme plays a critical role in colon cancer. There are currently no potent or clinically effective inhibitors for nCDase reported to date, so we adapted a fluorescence-based enzyme activity method to a high-throughput screening format. We opted to use an assay whereby nCDase hydrolyzes the substrate RBM 14-16, and the addition of NaIO4 acts as an oxidant that releases umbelliferone, resulting in a fluorescent signal. As designed, test compounds that act as ceramidase inhibitors will prevent the hydrolysis of RBM 14-16, thereby decreasing fluorescence. This assay uses a 1536-well plate format with excitation in the blue spectrum of light energy, which could be a liability, so we incorporated a counterscreen that allows for rapid selection against fluorescence artifacts to minimize false-positive hits. The high-throughput screen of >650,000 small molecules found several lead series of hits. Multiple rounds of chemical optimization ensued with improved potency in terms of IC50 and selectivity over counterscreen assays. This study describes the first large-scale high-throughput optical screening assay for nCDase inhibitors that has resulted in leads that are now being pursued in crystal docking studies and in vitro drug metabolism and pharmacokinetics (DMPK).


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Ceramidase Neutra/antagonistas & inibidores , Ceramidase Neutra/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ativação Enzimática/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Bibliotecas de Moléculas Pequenas
19.
Blood ; 137(5): 690-701, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232973

RESUMO

Transfusion-related acute lung injury (TRALI) is a hazardous transfusion complication with an associated mortality of 5% to 15%. We previously showed that stored (5 days) but not fresh platelets (1 day) cause TRALI via ceramide-mediated endothelial barrier dysfunction. As biological ceramides are hydrophobic, extracellular vesicles (EVs) may be required to shuttle these sphingolipids from platelets to endothelial cells. Adding to complexity, EV formation in turn requires ceramide. We hypothesized that ceramide-dependent EV formation from stored platelets and EV-dependent sphingolipid shuttling induces TRALI. EVs formed during storage of murine platelets were enumerated, characterized for sphingolipids, and applied in a murine TRALI model in vivo and for endothelial barrier assessment in vitro. Five-day EVs were more abundant, had higher long-chain ceramide (C16:0, C18:0, C20:0), and lower sphingosine-1-phosphate (S1P) content than 1-day EVs. Transfusion of 5-day, but not 1-day, EVs induced characteristic signs of lung injury in vivo and endothelial barrier disruption in vitro. Inhibition or supplementation of ceramide-forming sphingomyelinase reduced or enhanced the formation of EVs, respectively, but did not alter the injuriousness per individual EV. Barrier failure was attenuated when EVs were abundant in or supplemented with S1P. Stored human platelet 4-day EVs were more numerous compared with 2-day EVs, contained more long-chain ceramide and less S1P, and caused more endothelial cell barrier leak. Hence, platelet-derived EVs become more numerous and more injurious (more long-chain ceramide, less S1P) during storage. Blockade of sphingomyelinase, EV elimination, or supplementation of S1P during platelet storage may present promising strategies for TRALI prevention.


Assuntos
Vesículas Extracelulares/fisiologia , Transfusão de Plaquetas/efeitos adversos , Esfingolipídeos/metabolismo , Lesão Pulmonar Aguda Relacionada à Transfusão/etiologia , Animais , Plaquetas/ultraestrutura , Preservação de Sangue , Ceramidas/metabolismo , Células Endoteliais/fisiologia , Endotoxinas/toxicidade , Humanos , Lisofosfolipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/fisiologia , Esfingosina/análogos & derivados , Esfingosina/fisiologia , Lesão Pulmonar Aguda Relacionada à Transfusão/metabolismo , Lesão Pulmonar Aguda Relacionada à Transfusão/prevenção & controle
20.
Chem Commun (Camb) ; 56(94): 14885-14888, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33179626

RESUMO

Acid sphingomyelinase (ASM) is a potential drug target and involved in rapid lipid signalling events. However, there are no tools available to adequately study such processes. Based on a non cell-permeable PtdIns(3,5)P2 inhibitor of ASM, we developed a compound with o-nitrobenzyl photocages and butyryl esters to transiently mask hydroxyl groups. This resulted in a potent light-inducible photocaged ASM inhibitor (PCAI). The first example of a time-resolved inhibition of ASM was shown in intact living cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA