Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Toxicol Sci ; 186(2): 298-308, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35134235

RESUMO

The nonclinical safety profile of GS-8873, a hepatitis B virus RNA transcript inhibitor was evaluated in rat and monkey 13-week toxicity studies with 8-week recovery phases. Vehicle or GS-8873 was dosed orally for 13 weeks at 2, 6, 20, and 60 mg/kg/day to Wistar Han rats and at 0.5, 1.5, 3, and 6 mg/kg/day to cynomolgus monkeys. In vitro and in vivo screening results from an analog discovered prior to GS-8873 informed the 13-week toxicology study designs. Neuroelectrophysiology and neurobehavioral evaluations were included at weeks 4 and 13 of the dosing and recovery phases for GS-8873. No adverse neurobehavioral effects were observed. Significant nerve conduction velocity (NCV) decreases and latency increases occurred at the high doses after 4 weeks of dosing. By week 13, dose-responsive NCV reductions and latency increases worsened across all dose groups compared with controls. Some reversal occurred 8 weeks after the last dose administered, but not to vehicle control levels. A minimal, axonal degeneration was observed in rat spinal and peripheral nerves across dose groups compared with controls. No monkey nervous system microscopic findings were observed. No-observed-adverse-effect-levels could not be determined for either species due to the neuroelectrophysiology findings and development was halted in the interest of safety. A retrospective risk assessment approach utilizing benchmark dose (BMD) modeling contributed 13-week NCV BMDL estimates (lower limits of the 95% confidence interval) in lieu of no-observed-adverse-effect-levels. The best-fitted models extrapolated NCV BMDLs for the rat caudal and monkey sural nerve at 0.3 and 0.1 mg/kg/day, respectively.


Assuntos
Antivirais , Vírus da Hepatite B , Administração Oral , Animais , Antivirais/farmacologia , Antivirais/toxicidade , Haplorrinos , Vírus da Hepatite B/efeitos dos fármacos , Ratos , Ratos Wistar , Estudos Retrospectivos
2.
Toxicol Pathol ; 48(1): 71-77, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530138

RESUMO

The peripheral nervous system (PNS) is subject to a wide range of structural and functional insults including direct damage to axons, loss of myelin, and progressive deficits in saltatory conduction. Drugs that damage the PNS often result in neuropathies that impact the structure and function of targeted nerves. In most cases, both sensory and motor neurons are affected with damage initially evident in the distal extremities. Drug-induced neuropathies are potentially reversible following cessation of treatment, but early stages of neuropathy can be subclinical and asymptomatic making diagnosis difficult. Nerve biopsy is highly validated and provides definitive evidence of nerve injury and corresponding severity; however, it is limited in some respects and electrophysiological measures can complement histopathological assessments and provide a functional measure of potential toxicity. In a drug development setting, nerve conduction assessments are valuable to monitor nerve function longitudinally if nerve damage is suspected or confirmed, and importantly, can be used to monitor progression and/or recovery of a drug-induced neuropathy. This review will summarize the methodology used in nerve conduction assessments as well as discuss data interpretation and considerations for use in nonclinical species. Finally, the use of nerve conduction assessments in nonclinical drug development is discussed.


Assuntos
Condução Nervosa/fisiologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Humanos , Modelos Animais , Preparações Farmacêuticas
3.
J Pharmacol Toxicol Methods ; 99: 106611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31351950

RESUMO

Seizures are amongst the most frequent neurological issues encountered in pre-clinical safety testing. The objective was to characterize EEG morphologies and premonitory signs in drug-induced seizures in preclinical species. A comparative (inter-species) retrospective analysis for drug-induced seizures recorded by video-telemetry was conducted in rats (n = 53), dogs (n = 195), and non-human primates (n = 234). The most frequent premonitory signs were, in rats, myoclonus (100%), tremors (93%), salivation (75%), partial ptosis (58%) and chewing/bruxism (58%); in dogs, tremors (77%), ataxia/uncoordination (60%), myoclonus (45%), salivation (43%), excessive licking (38%), high vocalization (38%) and decreased activity (34%); in non-human primates, tremors (79%), decreased activity (70%), myoclonus (57%), retching/emesis (37%), hunched posture (30%) and ataxia/uncoordination (27%). Seizure duration ranged from 3 s to 14 min with an average of 46 ±â€¯21 s, comparable across species. At seizure onset, spike frequency averaged 9.4 Hz for the three species compared to 4.3 Hz at seizure end. Peak average amplitudes were attained at mid-seizure and amplitudes at seizure end decreased from peak but remained higher than onset amplitudes. Spike duration was inversely correlated with frequency and presented a crescendo pattern. Morphological characteristics can serve to refine automated EEG analysis. From a regulatory perspective, the most common paradigm is to use the most sensitive species in seizure liability studies but translational potential and clinical relevance may be under represented in the decision making process in some cases. EEG morphologies during drug-induced seizures presented remarkable similarities between species and tremors were identified as a predominant premonitory clinical sign in all species.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30922951

RESUMO

Seizures are amongst the most frequent neurological issues encountered in pre-clinical safety testing. The objective was to characterize EEG morphologies and premonitory signs in drug-induced seizures in preclinical species. A comparative (inter-species) retrospective analysis for drug-induced seizures recorded by video-telemetry was conducted in rats (n = 53), dogs (n = 195), and non-human primates (n = 234). The most frequent premonitory signs were, in rats, myoclonus (100%), tremors (93%), salivation (75%), partial ptosis (58%) and chewing/bruxism (58%); in dogs, tremors (77%), ataxia/uncoordination (60%), myoclonus (45%), salivation (43%), excessive licking (38%), high vocalization (38%) and decreased activity (34%); in non-human primates, tremors (79%), decreased activity (70%), myoclonus (57%), retching/emesis (37%), hunched posture (30%) and ataxia/uncoordination (27%). Seizure duration ranged from 3 s to 14 min with an average of 46 ±â€¯21 s, comparable across species. At seizure onset, spike frequency averaged 9.4 Hz for the three species compared to 4.3 Hz at seizure end. Peak average amplitudes were attained at mid-seizure and amplitudes at seizure end decreased from peak but remained higher than onset amplitudes. Spike duration was inversely correlated with frequency and presented a crescendo pattern. Morphological characteristics can serve to refine automated EEG analysis. From a regulatory perspective, the most common paradigm is to use the most sensitive species in seizure liability studies but translational potential and clinical relevance may be under represented in the decision making process in some cases. EEG morphologies during drug-induced seizures presented remarkable similarities between species and tremors were identified as a predominant premonitory clinical sign in all species.


Assuntos
Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Animais , Comportamento Animal/fisiologia , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Eletroencefalografia/métodos , Macaca fascicularis , Primatas , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos , Telemetria/métodos
5.
Toxicol Pathol ; 46(8): 1028-1036, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295173

RESUMO

Peripheral nervous system (PNS) toxicity is a frequent adverse effect encountered in patients treated with certain therapeutics (e.g., antiretroviral drugs, cancer chemotherapeutics), in occupational workers exposed to industrial chemicals (e.g., solvents), or during accidental exposures to household chemicals and/or environmental agents (e.g., pesticides). However, the literature and expertise needed for the effective design, conduct, analysis, and reporting of safety studies to identify and define PNS toxicity are hard to find. This half-day course familiarized participants with basic PNS biology; causes and mechanisms of PNS pathology; classic methods and current best practice recommendations for PNS sampling, preparation, and evaluation; and examples of commonly observed lesions and artifacts. Three concluding case presentations synthesized information from the prior technical lectures by presenting real-world examples of lesions caused by drugs and chemicals to demonstrate how PNS toxicity may be addressed in evaluating product safety during nonclinical studies. Topics emphasized comparative and correlative data among animal species used in toxicity studies and clinical evaluation in humans in order to facilitate the translation of animal data into human risk assessment with respect to PNS toxicologic pathology.


Assuntos
Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Animais , Humanos
6.
PLoS Biol ; 16(3): e2002988, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29534062

RESUMO

How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.


Assuntos
Lateralidade Funcional , Doenças do Labirinto/complicações , Atividade Motora/fisiologia , Animais , Comportamento Animal , Humanos , Camundongos , Transmissão Sináptica/fisiologia , Vestíbulo do Labirinto/fisiologia , Vestíbulo do Labirinto/fisiopatologia
7.
Sci Transl Med ; 8(365): 365ra159, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27856798

RESUMO

Microtubule-targeting agents (MTAs) are widely used anticancer agents, but toxicities such as neuropathy limit their clinical use. MTAs bind to and alter the stability of microtubules, causing cell death in mitosis. We describe DZ-2384, a preclinical compound that exhibits potent antitumor activity in models of multiple cancer types. It has an unusually high safety margin and lacks neurotoxicity in rats at effective plasma concentrations. DZ-2384 binds the vinca domain of tubulin in a distinct way, imparting structurally and functionally different effects on microtubule dynamics compared to other vinca-binding compounds. X-ray crystallography and electron microscopy studies demonstrate that DZ-2384 causes straightening of curved protofilaments, an effect proposed to favor polymerization of tubulin. Both DZ-2384 and the vinca alkaloid vinorelbine inhibit microtubule growth rate; however, DZ-2384 increases the rescue frequency and preserves the microtubule network in nonmitotic cells and in primary neurons. This differential modulation of tubulin results in a potent MTA therapeutic with enhanced safety.


Assuntos
Antineoplásicos/farmacologia , Lactamas Macrocíclicas/farmacologia , Microtúbulos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oxazóis/farmacologia , Alcaloides de Vinca/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Dimerização , Genômica , Humanos , Lactamas Macrocíclicas/química , Camundongos , Microscopia Eletrônica , Mitose , Transplante de Neoplasias , Oxazóis/química , Tubulina (Proteína)/química , Vimblastina/análogos & derivados , Vimblastina/química , Vimblastina/farmacologia , Alcaloides de Vinca/química , Vinorelbina
8.
Artigo em Inglês | MEDLINE | ID: mdl-27263834

RESUMO

The Safety Pharmacology Society (SPS) conducted an industry survey in 2015 to identify industry practices as they relate to central, peripheral and autonomic nervous system ('CNS') drug safety testing. One hundred fifty-eight (158) participants from Asia (16%), Europe (20%) and North America (56%) responded to the survey. 52% of participants were from pharmaceutical companies (>1000 employees). Oncology (67%) and neurology/psychiatry (66%) were the most frequent target indications pursued by companies followed by inflammation (48%), cardiovascular (43%), metabolic (39%), infectious (37%), orphan (32%) and respiratory (29%) diseases. Seizures (67% of participants), gait abnormalities (67%), tremors (65%), emesis (56%), sedation (52%) and salivation (47%) were the most commonly encountered CNS issues in pre-clinical drug development while headache (65%), emesis/nausea (60%), fatigue (51%) and dizziness (49%) were the most frequent issues encountered in Phase I clinical trials. 54% of respondents reported that a standard battery of tests applied to screen drug candidates was the approach most commonly used to address non-clinical CNS safety testing. A minority (14% of all participants) reported using electroencephalography (EEG) screening prior to animal inclusion on toxicology studies. The most frequent group size was n=8 for functional observation battery (FOB), polysomnography and seizure liability studies. FOB evaluations were conducted in a dedicated room (78%) by blinded personnel (66%) with control for circadian cycle (55%) effects (e.g., dosing at a standardized time; balancing time of day across treatment groups). The rat was reported as the most common species used for seizure liability, nerve conduction and drug-abuse liability testing.


Assuntos
Indústria Farmacêutica/estatística & dados numéricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doenças do Sistema Nervoso/induzido quimicamente , Envelhecimento , Animais , Comportamento Animal/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Eletroencefalografia/efeitos dos fármacos , Humanos , Camundongos , Doenças do Sistema Nervoso/epidemiologia , Condução Nervosa/efeitos dos fármacos , Ratos , Segurança , Convulsões/induzido quimicamente , Sono/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias , Inquéritos e Questionários
9.
J Pharmacol Toxicol Methods ; 81: 306-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27126304

RESUMO

INTRODUCTION: Continuous video-electroencephalographic (EEG) monitoring remains the gold standard for seizure liability assessments in preclinical drug safety assessments. EEG monitored by telemetry was used to assess the behavioral and EEG effects of noribogaine hydrochloride (noribogaine) in cynomolgus monkeys. Noribogaine is an iboga alkaloid being studied for the treatment of opioid dependence. METHODS: Six cynomolgus monkeys (3 per gender) were instrumented with EEG telemetry transmitters. Noribogaine was administered to each monkey at both doses (i.e., 160 and 320mg/kg, PO) with an interval between dosing of at least 6days, and the resulting behavioral and EEG effects were evaluated. IV pentylenetetrazol (PTZ), served as a positive control for induced seizures. RESULTS: The administration of noribogaine at either of the doses evaluated was not associated with EEG evidence of seizure or with EEG signals known to be premonitory signs of increased seizure risk (e.g., sharp waves, unusual synchrony, shifts to high-frequency patterns). Noribogaine was associated with a mild reduction in activity levels, increased scratching, licking and chewing, and some degree of poor coordination and related clinical signs. A single monkey exhibited brief myoclonic movements that increased in frequency at the high dose, but which did not appear to generalize, cluster or to be linked with EEG abnormalities. Noribogaine was also associated with emesis and partial anorexia. In contrast, PTZ was associated with substantial pre-ictal EEG patterns including large amplitude, repetitive sharp waves leading to generalized seizures and to typical post-ictal EEG frequency attenuation. INTERPRETATION: EEG patterns were within normal limits following administration of noribogaine at doses up to 320mg/kg with concurrent clinical signs that correlated with plasma exposures and resolved by the end of the monitoring period. PTZ was invariably associated with EEG paroxysmal activity leading to ictal EEG. In the current study, a noribogaine dose of 320mg/kg was considered to be the EEG no observed adverse effect level (NOAEL) in conscious freely moving cynomolgus monkeys.


Assuntos
Eletroencefalografia/efeitos dos fármacos , Ibogaína/análogos & derivados , Síndromes Neurotóxicas/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Convulsivantes , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Ibogaína/farmacocinética , Ibogaína/toxicidade , Macaca fascicularis , Masculino , Atividade Motora/efeitos dos fármacos , Pentilenotetrazol , Convulsões/induzido quimicamente , Telemetria
10.
Diabetes Care ; 39(4): 596-602, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26884473

RESUMO

OBJECTIVE: Lack of C-peptide in type 1 diabetes may be an important contributing factor in the development of microvascular complications. Replacement of native C-peptide has been shown to exert a beneficial influence on peripheral nerve function in type 1 diabetes. The aim of this study was to evaluate the efficacy and safety of a long-acting C-peptide in subjects with type 1 diabetes and mild to moderate peripheral neuropathy. RESEARCH DESIGN AND METHODS: A total of 250 patients with type 1 diabetes and peripheral neuropathy received long-acting (pegylated) C-peptide in weekly dosages of 0.8 mg (n = 71) or 2.4 mg (n = 73) or placebo (n = 106) for 52 weeks. Bilateral sural nerve conduction velocity (SNCV) and vibration perception threshold (VPT) on the great toe were measured on two occasions at baseline, at 26 weeks, and at 52 weeks. The modified Toronto Clinical Neuropathy Score (mTCNS) was used to grade the peripheral neuropathy. RESULTS: Plasma C-peptide rose during the study to 1.8-2.2 nmol/L (low dose) and to 5.6-6.8 nmol/L (high dose). After 52 weeks, SNCV had increased by 1.0 ± 0.24 m/s (P < 0.001 within group) in patients receiving C-peptide (combined groups), but the corresponding value for the placebo group was 1.2 ± 0.29 m/s. Compared with basal, VPT had improved by 25% after 52 weeks of C-peptide therapy (Δ for combined C-peptide groups: -4.5 ± 1.0 µm, placebo group: -0.1 ± 0.9 µm; P < 0.001). mTCNS was unchanged during the study. CONCLUSIONS: Once-weekly subcutaneous administration of long-acting C-peptide for 52 weeks did not improve SNCV, other electrophysiological variables, or mTCNS but resulted in marked improvement of VPT compared with placebo.


Assuntos
Peptídeo C/administração & dosagem , Diabetes Mellitus Tipo 1/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Adolescente , Adulto , Idoso , Glicemia/metabolismo , Índice de Massa Corporal , Peptídeo C/sangue , Diabetes Mellitus Tipo 1/sangue , Neuropatias Diabéticas/sangue , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Nervos Periféricos/metabolismo , Análise de Regressão , Adulto Jovem
11.
J Peripher Nerv Syst ; 20(4): 363-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26313450

RESUMO

We examined the efficacy and safety of ranirestat in patients with diabetic sensorimotor polyneuropathy (DSPN). Patients (18-75 years) with stable type 1/2 diabetes mellitus and DSPN were eligible for this global, double-blind, phase II/III study (ClinicalTrials.gov NCT00927914). Patients (n = 800) were randomized 1 : 1 : 1 to placebo, ranirestat 40 mg/day or 80 mg/day (265 : 264 : 271). Change in peroneal motor nerve conduction velocity (PMNCV) from baseline to 24 months was the primary endpoint with a goal improvement vs. placebo ≥1.2 m/s. Other endpoints included symptoms, quality-of-life, and safety. Six hundred thirty-three patients completed the study. The PMNCV difference from placebo was significant at 6, 12, and 18 months in both ranirestat groups, but <1.2 m/s. The mean improvement from baseline at 24 months was +0.49, +0.95, and +0.90 m/s for placebo, ranirestat 40 mg and 80 mg, respectively (NS). The treatment difference vs. placebo reached significance when ranirestat groups were combined in a post hoc analysis (+0.44 m/s; p = 0.0237). There was no effect of ranirestat on safety assessments, secondary or exploratory endpoints vs. placebo. Ranirestat was well tolerated and improved PMNCV, but did not achieve any efficacy endpoints. The absence of PMNCV worsening in the placebo group underscores the challenges of DSPN studies in patients with well-controlled diabetes.


Assuntos
Neuropatias Diabéticas/tratamento farmacológico , Polineuropatias/tratamento farmacológico , Pirazinas/uso terapêutico , Compostos de Espiro/uso terapêutico , Idoso , Neuropatias Diabéticas/fisiopatologia , Progressão da Doença , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Polineuropatias/fisiopatologia , Pirazinas/efeitos adversos , Pirazinas/farmacologia , Qualidade de Vida , Compostos de Espiro/efeitos adversos , Compostos de Espiro/farmacologia , Resultado do Tratamento
13.
J Pain ; 15(12): 1366-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283471

RESUMO

UNLABELLED: Complex regional pain syndrome (CRPS) is a potentially debilitating chronic pain syndrome with a poorly understood but likely neuroimmune/multifactorial pathophysiology associated with axonal injury. Based on the potential contribution of proinflammatory cytokines to CRPS pathogenesis and prior research with thalidomide, we investigated lenalidomide, a thalidomide derivative, for CRPS treatment. We conducted a phase II, randomized, double-blind, placebo-controlled study to evaluate the efficacy of oral lenalidomide 10 mg once daily in consenting patients with unilateral or bilateral CRPS type 1. The study comprised 12 weeks of treatment followed by a long-term extension. The primary efficacy outcome was reduced pain in the index limb, defined as ≥30% improvement from baseline using an 11-point numeric rating scale. One hundred eighty-four subjects enrolled. The primary endpoint was not met because equal proportions of treated (16.1%) and control (16.1%) subjects achieved the outcome; however, lenalidomide was well tolerated, with no evidence of neuropathy or major adverse effects. This study is the largest controlled, blinded clinical trial in subjects with chronic CRPS using the Budapest research criteria. It demonstrates the feasibility of conducting high-quality clinical trials in CRPS type 1 and provides considerations for designing future trials. PERSPECTIVE: This article reports an adequately powered, controlled clinical trial in subjects with CRPS. Treatment and placebo were equally effective, but the study demonstrated that lenalidomide treatment is feasible in this population. The study provides examples to consider in designing future CRPS trials.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Distrofia Simpática Reflexa/tratamento farmacológico , Talidomida/análogos & derivados , Idoso , Analgésicos não Narcóticos/efeitos adversos , Doença Crônica , Método Duplo-Cego , Feminino , Humanos , Lenalidomida , Masculino , Pessoa de Meia-Idade , Distrofia Simpática Reflexa/fisiopatologia , Talidomida/efeitos adversos , Talidomida/uso terapêutico , Resultado do Tratamento
14.
Science ; 341(6150): 1120-3, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24009395

RESUMO

There is a high prevalence of behavioral disorders that feature hyperactivity in individuals with severe inner ear dysfunction. What remains unknown is whether inner ear dysfunction can alter the brain to promote pathological behavior. Using molecular and behavioral assessments of mice that carry null or tissue-specific mutations of Slc12a2, we found that inner ear dysfunction causes motor hyperactivity by increasing in the nucleus accumbens the levels of phosphorylated adenosine 3',5'-monophosphate response element-binding protein (pCREB) and phosphorylated extracellular signal-regulated kinase (pERK), key mediators of neurotransmitter signaling and plasticity. Hyperactivity was remedied by local administration of the pERK inhibitor SL327. These findings reveal that a sensory impairment, such as inner ear dysfunction, can induce specific molecular changes in the brain that cause maladaptive behaviors, such as hyperactivity, that have been traditionally considered exclusively of cerebral origin.


Assuntos
Corpo Estriado/fisiopatologia , Orelha Interna/fisiopatologia , Hipercinese/fisiopatologia , Doenças do Labirinto/fisiopatologia , Transtornos Mentais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Corpo Estriado/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Orelha Interna/patologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipercinese/genética , Doenças do Labirinto/genética , Doenças do Labirinto/patologia , Transtornos Mentais/genética , Camundongos , Camundongos Knockout , Atividade Motora/genética , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Órgão Espiral/patologia , Órgão Espiral/fisiopatologia , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto
15.
Handb Clin Neurol ; 115: 265-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23931786

RESUMO

The assessment of changes in sensory-motor function in clinical research presents a unique set of difficulties. Clinimetrics is the science of measurement as related to the identification of a clinical disorder, the tracing of the progression of the condition under study, and calculation of its impact. The selection of appropriate measures for clinical studies of sensory-motor function must consider validity, sensitivity, specificity, responsiveness, reliability, and feasibility. Reasonable measures of motor function in clinical research include manual examination of muscle strength, electrophysiology, functional scales, patient-reported outcomes (e.g., quality of life), and for severe conditions such as ALS, survival. The assessment of sensory function includes targeted electrophysiology and QOL, as well as more focused measures such as quantitative sensory testing and the scoring of positive symptoms. Each individual measure and each combination of endpoints has its strengths and limitations.


Assuntos
Pesquisa Biomédica , Movimento , Doenças do Sistema Nervoso Periférico/diagnóstico , Sensação , Humanos , Avaliação de Resultados em Cuidados de Saúde , Doenças do Sistema Nervoso Periférico/fisiopatologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Physiol J ; 20132013.
Artigo em Inglês | MEDLINE | ID: mdl-23580940

RESUMO

A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p<0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p<0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.

17.
Neurology ; 77(19): 1770-1; author reply 1771, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22067966
18.
J Neuropathol Exp Neurol ; 70(12): 1138-50, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22082665

RESUMO

Central nervous system hypomyelination is a feature common to a number of transgenic (Tg) mouse lines that express a variety of unrelated exogenous (i.e. non-central nervous system) transgenes. In this report, we document hypomyelination structurally by immunocytochemistry and functionally in the Tg line MBP-JE, which over expresses the chemokine CCL2 (MCP-1) within oligodendrocytes targeted by a myelin basic protein (MBP) promoter. Analysis of hypomyelinated optic nerves of Tg mice revealed progressive decrease in oligodendrocyte numbers with age (p < 0.01). Although molecular mechanisms underlying hypomyelination in this and other Tg models remain largely unknown, we present preliminary findings on oligodendrocyte progenitor cell (OPC) cultures in which, although OPC expressed CCR2, the receptor for CCL2, treatment with CCL2 had no significant effect on OPC proliferation, differentiation, or apoptosis. We suggest that hypomyelination in the MBP-JE model might not be due to CCL2 expression but rather the result of transcriptional dysfunction related to random insertion of the MBP promoter that disrupts myelinogenesis and leads to oligodendrocyte demise. Because an MBP promoter is a common denominator in most Tg lines displaying hypomyelination, we hypothesize that use of myelin gene sequences in the regulator region of Tg constructs might underlie this perturbation of myelination in such models.


Assuntos
Doenças Desmielinizantes/genética , Proteína Básica da Mielina/genética , Bainha de Mielina/genética , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células-Tronco Neurais
19.
Diabetes Metab Res Rev ; 27(7): 620-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21695763

RESUMO

Prior to a joint meeting of the Neurodiab Association and International Symposium on Diabetic Neuropathy held in Toronto, Ontario, Canada, 13-18 October 2009, Solomon Tesfaye, Sheffield, UK, convened a panel of neuromuscular experts to provide an update on polyneuropathies associated with diabetes (Toronto Consensus Panels on DPNs, 2009). Herein, we provide definitions of typical and atypical diabetic polyneuropathies (DPNs), diagnostic criteria, and approaches to diagnose sensorimotor polyneuropathy as well as to estimate severity. Diabetic sensorimotor polyneuropathy (DSPN), or typical DPN, usually develops on long-standing hyperglycaemia, consequent metabolic derangements and microvessel alterations. It is frequently associated with microvessel retinal and kidney disease-but other causes must be excluded. By contrast, atypical DPNs are intercurrent painful and autonomic small-fibre polyneuropathies. Recognizing that there is a need to detect and estimate severity of DSPN validly and reproducibly, we define subclinical DSPN using nerve conduction criteria and define possible, probable, and confirmed clinical levels of DSPN. For conduct of epidemiologic surveys and randomized controlled trials, it is necessary to pre-specify which attributes of nerve conduction are to be used, the criterion for diagnosis, reference values, correction for applicable variables, and the specific criterion for DSPN. Herein, we provide the performance characteristics of several criteria for the diagnosis of sensorimotor polyneuropathy in healthy subject- and diabetic subject cohorts. Also outlined here are staged and continuous approaches to estimate severity of DSPN.


Assuntos
Neuropatias Diabéticas/diagnóstico , Condução Nervosa/fisiologia , Neuropatias Diabéticas/classificação , Neuropatias Diabéticas/fisiopatologia , Eletrodiagnóstico , Humanos , Pesquisa , Índice de Gravidade de Doença
20.
Prostate ; 71(5): 480-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20878947

RESUMO

BACKGROUND: Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. METHODS: Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. RESULTS: As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. CONCLUSIONS: Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs.


Assuntos
Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/toxicidade , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacocinética , Animais , Cães , Descoberta de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias da Próstata/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA