RESUMO
Γ-valerolactone (GVL), marketed online as "Tranquilli-G" and "excellent Valium", is used as a legal substitute for γ-hydroxybutyric acid (GHB); however, until now, GVL has only been connected to one Drug-Facilitated Sexual Assault (DFSA) case. Moreover, the pharmaco-toxicological effects of GVL are poorly studied. The aim of this study was to investigate the 1) in vivo effects of gavage administration of GVL (100-3000 mg/kg) on neurological (myoclonia, convulsions), sensorimotor (visual, acoustic, and overall tactile) responses, righting reflex, thermoregulation, motor activity (bar, drag, and accelerod test) and cardiorespiratory changes (heart rate, breath rate, oxygen saturation, and pulse distension) in CD-1 male mice and the 2) in silico ADMET profile of GVL in comparison to GHB and the open active form γ-hydroxyvaleric acid (GHV). The present study demonstrates that GVL inhibits, in a dose-dependent manner, sensorimotor and motor responses and induces cardiorespiratory depression (at a dose of 3000 mg/kg) in mice. The determination of the ED50 in sensorimotor and motor responses revealed that GVL is about 4-5 times less potent than GHB. In silico prediction of ADMET profiles revealed toxicokinetic similarities between GHB and GHV, and differences with GVL. These results suggest that GVL could be used as a substitute for GHB and should be added to forensic toxicology screenings.
Assuntos
Oxibato de Sódio , Masculino , Camundongos , Animais , Hidroxibutiratos , Simulação por ComputadorRESUMO
BACKGROUND AND PURPOSE: Psychotic disorders have been reported in long-term users of synthetic cannabinoids. This study aims at investigating the long-lasting effects of repeated JWH-018 exposure. EXPERIMENTAL APPROACH: Male CD-1 mice were injected with vehicle, JWH-018 (6 mg·kg-1 ), the CB1 -antagonist NESS-0327 (1 mg·kg-1 ) or co-administration of NESS-0327 and JWH-018, every day for 7 days. After 15 or 16 days washout, we investigated the effects of JWH-018 on motor function, memory, social dominance and prepulse inhibition (PPI). We also evaluated glutamate levels in dialysates from dorsal striatum, striatal dopamine content and striatal/hippocampal neuroplasticity focusing on the NMDA receptor complex and the neurotrophin BDNF. These measurements were accompanied by in vitro electrophysiological evaluations in hippocampal preparations. Finally, we investigated the density of CB1 receptors and levels of the endocannabinoid anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and their main synthetic and degrading enzymes in the striatum and hippocampus. KEY RESULTS: The repeated treatment with JWH-018 induced psychomotor agitation while reducing social dominance, recognition memory and PPI in mice. JWH-018 disrupted hippocampal LTP and decreased BDNF expression, reduced the synaptic levels of NMDA receptor subunits and decreased the expression of PSD95. Repeated exposure to JWH-018, reduced hippocampal CB1 receptor density and induced a long-term alteration in AEA and 2-AG levels and their degrading enzymes, FAAH and MAGL, in the striatum. CONCLUSION AND IMPLICATIONS: Our findings suggest that repeated administration of a high dose of JWH-018 leads to the manifestation of psychotic-like symptoms accompanied by alterations in neuroplasticity and change in the endocannabinoid system.
Assuntos
Canabinoides , Disfunção Cognitiva , Camundongos , Masculino , Animais , Endocanabinoides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato , Canabinoides/farmacologia , Plasticidade Neuronal , Receptor CB1 de Canabinoide/metabolismoRESUMO
RATIONALE: 1-[(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl) methanone (MAM-2201) is a potent synthetic cannabinoid receptor agonist illegally marketed in "spice" products and as "synthacaine" for its psychoactive effects. It is a naphthoyl-indole derivative which differs from its analogue 1-[(5-Fluoropentyl)-1H-indol-3-yl](1-naphthylenyl) methanone (AM-2201) by the presence of a methyl substituent on carbon 4 (C-4) of the naphthoyl moiety. Multiple cases of intoxication and impaired driving have been linked to AM-2201 and MAM-2201 consumption. OBJECTIVES: This study aims to investigate the in vitro (murine and human cannabinoid receptors) and in vivo (CD-1 male mice) pharmacodynamic activity of MAM-2201 and compare its effects with those induced by its desmethylated analogue, AM-2201. RESULTS: In vitro competition binding studies confirmed that MAM-2201 and AM-2201 possess nanomolar affinity for both CD-1 murine and human CB1 and CB2 receptors, with preference for the CB1 receptor. In agreement with the in vitro binding data, in vivo studies showed that MAM-2201 induces visual, acoustic, and tactile impairments that were fully prevented by pretreatment with CB1 receptor antagonist/partial agonist AM-251, indicating a CB1 receptor mediated mechanism of action. Administration of MAM-2201 also altered locomotor activity and PPI responses of mice, pointing out its detrimental effect on motor and sensory gating functions and confirming its potential use liability. MAM-2201 and AM-2201 also caused deficits in short- and long-term working memory. CONCLUSION: These findings point to the potential public health burden that these synthetic cannabinoids may pose, with particular emphasis on impaired driving and workplace performance.
Assuntos
Canabinoides , Inibição Pré-Pulso , Masculino , Camundongos , Humanos , Animais , Canabinoides/farmacologia , Indóis/farmacologia , Receptor CB1 de Canabinoide , Receptor CB2 de CanabinoideRESUMO
Over the last year, NPSs have been steadily on the rise in the illicit drug market. Among these, synthetic cathinones seem to become increasingly popular among young adults, mainly because of their ability to replicate the effects of traditional psychostimulant drugs, such as cocaine, MDMA and amphetamines. However, scarce data are available about the in vivo pharmaco-toxicology of these new substances. To this end, this study focused on evaluation of effects induced by repeated administration of mephtetramine (MTTA 0.1-30 mg/kg i.p.) in mice. This atypical cathinone highlighted a sensorial (inhibition of visual and acoustic reflexes) and transient physiological parameter (decrease in breath rate and temperature) change in mice. Regarding motor activity, both a dose-dependent increase (accelerod test) and biphasic effect (drag and mobility time test) have been shown. In addition, blood and urine samples have been analysed to enrich the experimental featuring of the present study with reference to evaluation of potential toxicity related to consumption of MTTA. The latter analysis has particularly revealed important changes in blood cells count and blood and urine physicochemical profile after repeated treatment with this atypical cathinone. Moreover, MTTA induced histological changes in heart, kidney and liver samples, emphasizing its potential toxicity.
RESUMO
Drug forums are considered as the main platform sources that have contributed to the increase in NPS popularity, especially for those not yet known to law enforcement and therefore not yet illegal. An example is the new synthetic stimulant NM2AI, which has a very short history of human use and abuse. Little is known regarding this compound, but some information from internet forums and the scientific literature indicates NM2AI as a structural derivate of MDAI, which is known for its entactogenic activity. Indeed, the purpose of this study is to evaluate, for the first time, the in vivo acute effect induced by the intraperitoneal injection of NM2AI (1-10-30-100 mg/kg) in mice. We demonstrate the sensory (by visual placing and object tests) and physiological (core temperature measurement) function variations, nociceptor (by tail pinch test) and strength (grip test) alterations, and sensorimotor (time on rod and mobility) decrease. Moreover, we verify the mild hallucinogenic effect of NM2AI (by startle/prepulse inhibition test). Lastly, we perform a pharmacokinetic study on mice blood samples, highlighting that the main active metabolite of NM2AI is 2-aminoindane (2AI). Taken together, our data confirm the suspected entactogenic activity of NM2AI; however, these in vivo effects appear atypical and less intense with respect to those induced by the classic stimulants, in surprising analogy with what is reported by networked users.
Assuntos
Estimulantes do Sistema Nervoso Central , Drogas Ilícitas , Camundongos , Humanos , Animais , Indanos/química , PsicotrópicosRESUMO
Several new psychoactive substances (NPS) are responsible for intoxication involving the cardiovascular and respiratory systems. Among NPS, synthetic cannabinoids (SCs) provoked side effects in humans characterized by tachycardia, arrhythmias, hypertension, breathing difficulty, apnoea, myocardial infarction, and cardiac arrest. Therefore, the present study investigated the cardio-respiratory (MouseOx Plus; EMKA electrocardiogram (ECG) and plethysmography TUNNEL systems) and vascular (BP-2000 systems) effects induced by 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018; 0.3-3-6 mg/kg) and Δ9-tetrahydrocannabinol (Δ9-THC; 0.3-3-6 mg/kg), administered in awake CD-1 male mice. The results showed that higher doses of JWH-018 (3-6 mg/kg) induced deep and long-lasting bradycardia, alternated with bradyarrhythmia, spaced out by sudden episodes of tachyarrhythmias (6 mg/kg), and characterized by ECG electrical parameters changes, sustained bradypnea, and systolic and transient diastolic hypertension. Otherwise, Δ9-THC provoked delayed bradycardia (minor intensity tachyarrhythmias episodes) and bradypnea, also causing a transient and mild hypertensive effect at the tested dose range. These effects were prevented by both treatment with selective CB1 (AM 251, 6 mg/kg) and CB2 (AM 630, 6 mg/kg) receptor antagonists and with the mixture of the antagonists AM 251 and AM 630, even if in a different manner. Cardio-respiratory and vascular symptoms could be induced by peripheral and central CB1 and CB2 receptors stimulation, which could lead to both sympathetic and parasympathetic systems activation. These findings may represent a starting point for necessary future studies aimed at exploring the proper antidotal therapy to be used in SCs-intoxicated patient management.
Assuntos
Canabinoides , Dronabinol , Hipertensão , Animais , Masculino , Camundongos , Bradicardia/induzido quimicamente , Canabinoides/farmacologia , Dronabinol/farmacologia , Receptor CB1 de CanabinoideRESUMO
Operating a vehicle is a complex task that requires multiple cognitive functions and psychomotor skills to cooperate. Driving might be impaired by licit or illicit drugs, including novel psychoactive substances (NPS) and novel synthetic opioids (NSO), the effects of which are still yet to be elucidated in humans. In the present work, a revision of the literature regarding the psychomotor impairing effects of Fentanyl (FENT) and three analogues (Acrylfentanyl, Ocfentanyl and Furanylfentanyl) is presented, as emerged by experimental studies on humans, driving under the influence of a drug (DUID) and intoxication cases. An experimental study on a mouse model evaluated the sensorimotor alterations induced by FENT and the three fentalogs. Acute systemic administration of the four opioids (0.01-15 mg/kg i.p.) dose-dependently decreased the visual object and placing tests, the acoustic and the tactile responses of mice. The preclinical data are in accordance with the data that emerged from the revision of the literature regarding experimental data on humans, driving under the influence of drugs and intoxication cases, suggesting that novel synthetic opioids might affect the psychomotor performances on daily human tasks with a particular focus on driving.
Assuntos
Analgésicos Opioides , Drogas Ilícitas , Humanos , Animais , Camundongos , Analgésicos Opioides/farmacologia , Fentanila/farmacologia , Detecção do Abuso de SubstânciasRESUMO
JWH-073 is a synthetic cannabinoid (SCB) that is illegally marketed within an "herbal blend", causing psychoactive effects more intense than those produced by Cannabis. Users report that JWH-073 causes less harmful effects than other SCBs, misrepresenting it as a "safe JWH-018 alternative", which in turn prompts its recreational use. The present study is aimed to investigate the in vivo pharmacological activity on physiological and neurobehavioral parameters in male CD-1 mice after acute 1 mg/kg JWH-073 administration. To this aim we investigate its effect on sensorimotor (visual, acoustic, and tactile), motor (spontaneous motor activity and catalepsy), and memory functions (novel object recognition; NOR) in mice coupling behavioral and EEG data. Moreover, to clarify how memory function is affected by JWH-073, we performed in vitro electrophysiological studies in hippocampal preparations using a Long-Term Potentiation (LTP) stimulation paradigm. We demonstrated that acute administration of JWH-073 transiently decreased motor activity for up to 25 min and visual sensorimotor responses for up to 105 min, with the highest effects at 25 min (~48 and ~38%, respectively), while the memory function was altered up to 24 h (~33%) in treated-mice as compared to the vehicle. EEG in the somatosensory cortex showed a maximal decrease of α (~23%) and γ (~26%) bands at 15 min, ß (~26%) band at 25 min, a maximal increase of θ (~14%) band at 25 min and δ (~35%) band at 2 h, and a significant decrease of θ (~18%), α (~26%), and ß (~10%) bands during 24 h. On the other hand, EEG in the hippocampus showed a significant decrease of all bands from 10 min to 2 h, with the maximal effect at 30 min for θ (~34%) and γ (~26%) bands and 2 h for α (~36%), ß (~29%), and δ (~15%) bands. Notably, the δ band significant increase both at 5 min (~12%) and 24 h (~19%). Moreover, in vitro results support cognitive function impairment (~60% of decrease) by interfering with hippocampal synaptic transmission and LTP generation. Our results suggest that JWH-073 deeply alters brain electrical responsiveness with minor behavioral symptoms. Thus, it poses a subtle threat to consumers who mistakenly consider it safer than other SCBs.
RESUMO
3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.
Assuntos
Canabinoides , Naftalenos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/química , Canabinoides/farmacologia , Humanos , Indóis/química , Masculino , Camundongos , Naftalenos/química , Receptor CB1 de CanabinoideRESUMO
In the recent decade, numerous new psychoactive substances (NPSs) have been added to the illicit drug market. These are synthetized to mimic the effects of classic drugs of abuse (i.e., cannabis, cocaine, etc.), with the purpose of bypassing substance legislations and increasing the pharmacotoxicological effects. To date, research into the acute pharmacological effects of new NPSs is ongoing and necessary in order to provide an appropriate contribution to public health. In fact, multiple examples of NPS-related acute intoxication and mortality have been recorded in the literature. Accordingly, several in vitro and in vivo studies have investigated the pharmacotoxicological profiles of these compounds, revealing that they can cause adverse effects involving various organ systems (i.e., cardiovascular, respiratory effects) and highlighting their potential increased consumption risks. In this sense, NPSs should be regarded as a complex issue that requires continuous monitoring. Moreover, knowledge of long-term NPS effects is lacking. Because genetic and environmental variables may impact NPS responses, epigenetics may aid in understanding the processes behind the harmful events induced by long-term NPS usage. Taken together, "pharmacoepigenomics" may provide a new field of combined study on genetic differences and epigenetic changes in drug reactions that might be predictive in forensic implications.
RESUMO
In the last decade, the market for new psychoactive substances has been enriched by numerous psychedelic phenethylamines, which mimic the psychoactive effect of lysergic acid diethylamide (LSD). In particular, the -NBOMe series, which are more potent than their 2C compounds analogs, are considered worthy substitutes for LSD by users. The purpose of this study was to assess the effects of 25H-NBOMe and its halogenated derivatives (25I-NBOMe and 25B-NBOMe) in comparison to their 2C compounds analogs and LSD on the sensorimotor (visual, acoustic, and overall tactile), reaction time, spontaneous (total distance traveled) and stimulated (drag, accelerod test) motor activity, grip strength test, and prepulse inhibition (PPI) responses in mice. Systemic administration of -NBOMe, 2C compounds analogs, and LSD (0.001-10 mg/kg) differently impaired the sensorimotor, reaction time, motor, and PPI responses in mice. In particular, halogenated (25I and 25B)-NBOMe derivatives appear to be more effective than the entire class of 2C compounds analogs in altering visual and acoustic responses, affecting reaction time, and motor and sensory gating in PPI test. In fact, the specific rank order of compounds potency for nearly all of the experiments showed that (25I and 25B)-NBOMe were more potent than 2C compounds analogs and LSD. -NBOMe and 2C compounds analogs impaired not only the reception of incoming sensory stimuli (visual and acoustic), but their correct brain processing (PPI) in an equal and sometimes stronger way than LSD. This sensory impairment directly affected the spontaneous motor response and reaction time of mice, with no change in performance in stimulated motor activity tests. These aspects should be carefully considered to better understand the potential danger that psychedelic phenethylamines, in particular -NBOMe, may pose to public health, with particular reference to decreased performance in driving and hazardous works that require special sensorimotor skills.
RESUMO
Fentanyl derivatives (FENS) belongs to the class of Novel Synthetic Opioids that emerged in the illegal drug market of New Psychoactive Substances (NPS). These substances have been implicated in many cases of intoxication and death with overdose worldwide. Therefore, the aim of this study is to investigate the pharmaco-dynamic profiles of three fentanyl (FENT) analogues: Acrylfentanyl (ACRYLF), Ocfentanyl (OCF) and Furanylfentanyl (FUF). In vitro, we measured FENS opioid receptor efficacy, potency, and selectivity in calcium mobilization studies performed in cells coexpressing opioid receptors and chimeric G proteins and their capability to promote the interaction of the mu receptor with G protein and ß-arrestin 2 in bioluminescence resonance energy transfer (BRET) studies. In vivo, we investigated the acute effects of the systemic administration of ACRYLF, OCF and FUF (0.01-15 mg/kg i.p.) on mechanical and thermal analgesia, motor impairment, grip strength and cardiorespiratory changes in CD-1 male mice. Opioid receptor specificity was investigated in vivo using naloxone (NLX; 6 mg/kg i.p) pre-treatment. In vitro, the three FENS were able to activate the mu opioid receptor in a concentration dependent manner with following rank order potency: FUF > FENT=OCF > ACRYLF. All compounds were able to elicit maximal effects similar to that of dermorphin, with the exception of FUF which displayed lower maximal effects thus behaving as a partial agonist. In the BRET G-protein assay, all compounds behaved as partial agonists for the ß-arrestin 2 pathway in comparison with dermorphin, whereas FUF did not promote ß-arrestin 2 recruitment, behaving as an antagonist. In vivo, all the compounds increased mechanical and thermal analgesia with following rank order potency ACRYLF = FENT > FUF > OCF and impaired motor and cardiorespiratory parameters. Among the substances tested, FUF showed lower potency for cardiorespiratory and motor effects. These findings reveal the risks associated with the use of FENS and the importance of studying the pharmaco-dynamic properties of these drugs to better understand possible therapeutic interventions in the case of toxicity.
Assuntos
Fentanila , Receptores Opioides mu , Analgésicos Opioides , Animais , Fentanila/análogos & derivados , Fentanila/farmacologia , Furanos , Masculino , Camundongos , Dor/tratamento farmacológico , Receptores Opioides/metabolismo , Receptores Opioides mu/agonistas , beta-Arrestina 2/metabolismoRESUMO
BACKGROUND: Reports concerning the causal link between aggressive behavior and use and abuse of different substances (i.e., alcohol, MDPV) can be found in the literature. Nonetheless, the topic concerning the effects of acute ethanol administration on MDPV and cocaine induced aggressive behavior has yet to be thoroughly investigated. The aim of this study was to investigate such synergistic effects. MATERIALS AND METHODS: A total of 360 male mice were employed in the study. Ethanol was diluted with saline solution and administered 10 min before MDPV or cocaine injection via oral gavage needles. Similarly, MDPV and cocaine were dissolved in saline solution and administered by intraperitoneal injection. Different associations of specific drug doses were then tested. To investigate the acute effects of MDPV and cocaine and their interaction with ethanol on aggression in mice, a resident-intruder test was used. RESULTS: Ethanol alone was ineffective at dosages of 0.05 g/kg and 0.25 g/kg but increased the aggressiveness of the mice at 0.125 g/kg. Similarly, the injection of both cocaine alone and MDPV alone did not significantly increase the aggressiveness of the mice; conversely, the combination of ethanol and cocaine and ethanol and MDPV enhanced aggression at specific ethanol dosages (0.05 g/kg and 0.125 g/kg). CONCLUSION: This study demonstrated that acute ethanol administration enhances MDPV- and cocaine-induced aggressive behavior in mice. This aggressive response is particularly enhanced when MDVP and cocaine are coupled with specific ethanol dosages, proving that psychostimulant drugs may act synergistically under certain conditions.
Assuntos
Cocaína , Agressão , Animais , Benzodioxóis , Relação Dose-Resposta a Droga , Etanol , Masculino , Camundongos , PirrolidinasRESUMO
4,4'-Dimethylaminorex (4,4'-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1-60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4'-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers' co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.
Assuntos
Comportamento Animal/efeitos dos fármacos , Oxazóis/toxicidade , Transtornos Psicofisiológicos/metabolismo , Transtornos Psicofisiológicos/patologia , Psicotrópicos/toxicidade , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxazóis/classificação , Oxazóis/urina , Transtornos Psicofisiológicos/induzido quimicamente , Psicotrópicos/classificação , Psicotrópicos/urina , EstereoisomerismoRESUMO
Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35-100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.
Assuntos
Alcaloides/toxicidade , Metanfetamina/análogos & derivados , Mutagênicos/toxicidade , Pentanonas/toxicidade , Pirrolidinas/toxicidade , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metanfetamina/toxicidade , Micronúcleo Germinativo/efeitos dos fármacos , Micronúcleo Germinativo/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.
Assuntos
Analgésicos Opioides/toxicidade , Anisóis/toxicidade , Derivados de Benzeno/toxicidade , Alucinógenos/toxicidade , Fenciclidina/toxicidade , Psicotrópicos/toxicidade , Receptores Opioides/metabolismo , Tramadol/toxicidade , Analgésicos Opioides/química , Animais , Anisóis/química , Derivados de Benzeno/química , Células Cultivadas , Cricetinae , Alucinógenos/química , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Fenciclidina/química , Psicotrópicos/química , Tramadol/químicaRESUMO
N-methyl-2-pyrrolidone (NMP) and γ-hydroxybutyrate acid (GHB) are synthetic solvents detected in the recreational drug market. GHB has sedative/hypnotic properties and is used for criminal purposes to compromise reaction ability and commit drug-facilitated sexual assaults and other crimes. NMP is a strong solubilizing solvent that has been used alone or mixed with GHB in case of abuse and robberies. The aim of this experimental study is to compare the acute pharmaco-toxicological effects of NMP and GHB on neurological signs (myoclonia, convulsions), sensorimotor (visual, acoustic, and overall tactile) responses, righting reflex, thermoregulation, and motor activity (bar, drag, and accelerod test) in CD-1 male mice. Moreover, since cardiorespiratory depression is one of the main adverse effects related to GHB intake, we investigated the effect of NMP and GHB on cardiorespiratory changes (heart rate, breath rate, oxygen saturation, and pulse distension) in mice. The present study demonstrates that NMP inhibited sensorimotor and motor responses and induced cardiorespiratory depression, with a lower potency and efficacy compared to GHB. These results suggest that NMP can hardly be used alone as a substance to perpetrate sexual assault or robberies.
Assuntos
Drogas Ilícitas/toxicidade , Locomoção/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Pirrolidinonas/toxicidade , Reflexo de Sobressalto/efeitos dos fármacos , Oxibato de Sódio/toxicidade , Adjuvantes Anestésicos/toxicidade , Animais , Relação Dose-Resposta a Droga , Hipnóticos e Sedativos/toxicidade , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Desempenho Psicomotor/fisiologia , Estupro , Reflexo de Sobressalto/fisiologia , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/fisiopatologiaRESUMO
The emerging market of new psychoactive substances (NPSs) is a global-scale phenomenon, and their identification in biological samples is challenging because of the lack of information about their metabolism and pharmacokinetic. In this study, we performed in silico metabolic pathway prediction and in vivo metabolism experiments, in order to identify the main metabolites of mephtetramine (MTTA), an NPS found in seizures since 2013. MetaSite™ software was used for in silico metabolism predictions and subsequently the presence of metabolites in the blood, urine, and hair of mice after MTTA administration was verified. The biological samples were analyzed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) using a benchtop Orbitrap instrument. This confirmed the concordance between software prediction and experimental results in biological samples. The metabolites were identified by their accurate masses and fragmentation patterns. LC-HRMS analysis identified the dehydrogenated and demethylated-dehydrogenated metabolites, together with unmodified MTTA in the blood samples. Besides unmodified MTTA, 10 main metabolites were detected in urine. In hair samples, only demethyl MTTA was detected along with MTTA. The combination of Metasite™ prediction and in vivo experiment was a powerful tool for studying MTTA metabolism. This approach enabled the development of the analytical method for the detection of MTTA and its main metabolites in biological samples. The development of analytical methods for the identification of new drugs and their main metabolites is extremely useful for the detection of NPS in biological specimens. Indeed, high throughput methods are precious to uncover the actual extent of use of NPS and their toxicity.
Assuntos
Drogas Desenhadas/metabolismo , Drogas Desenhadas/toxicidade , Naftalenos/metabolismo , Naftalenos/toxicidade , Psicotrópicos/metabolismo , Psicotrópicos/toxicidade , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Drogas Desenhadas/química , Cabelo/química , Hidrogenação , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR , Naftalenos/química , Psicotrópicos/química , Software , Espectrometria de Massas em TandemRESUMO
Recreational use of illicit methiopropamine (MPA) is a public health concern because it produces neurochemical effects comparable with those induced by methamphetamine (METH). The present study investigated the effects of MPA on the expression of an aggressive behaviour. Eighty CD-1 male mice, after receiving intraperitoneal injection of saline, MPA (0.01-10 mg/kg), METH (0.01-10 mg/kg), or AMPH (0.01-10 mg/kg), once a week over a 5-week period, underwent the resident-intruder test and spontaneous locomotor activity measurement. Results showed that all psychostimulants induce aggressive behaviour even at low doses, with a dose-dependent increase and a time-dependent sensitisation. MPA potency was similar to METH and superior to AMPH. Therefore, MPA-induced aggressive behaviour may appear even at MPA dosages free of cardiovascular or other behavioural adverse effects and could become a non-intentional side effect that users experience after increasing and repeating MPA consumption.
Assuntos
Agressão/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Metanfetamina/análogos & derivados , Tiofenos/administração & dosagem , Tiofenos/toxicidade , Agressão/fisiologia , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/toxicidade , Relação Dose-Resposta a Droga , Locomoção/fisiologia , Masculino , Metanfetamina/administração & dosagem , Metanfetamina/química , Metanfetamina/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Tiofenos/químicaRESUMO
The drastic increase in hallucinogenic compounds in illicit drug markets of new psychoactive substances (NPS) is a worldwide threat. Among these, 2, 5-dimetoxy-4-bromo-amphetamine (DOB) and paramethoxyamphetamine (PMA; marketed as "ecstasy") are frequently purchased on the dark web and consumed for recreational purposes during rave/dance parties. In fact, these two substances seem to induce the same effects as MDMA, which could be due to their structural similarities. According to users, DOB and PMA share the same euphoric effects: increasing of the mental state, increasing sociability and empathy. Users also experienced loss of memory, temporal distortion, and paranoia following the repetition of the same thought. The aim of this study was to investigate the effect of the acute systemic administration of DOB and PMA (0.01-30 mg/kg; i.p.) on motor, sensorimotor (visual, acoustic, and tactile), and startle/PPI responses in CD-1 male mice. Moreover, the pro-psychedelic effect of DOB (0.075-2 mg/kg) and PMA (0.0005-0.5 mg/kg) was investigated by using zebrafish as a model. DOB and PMA administration affected spontaneous locomotion and impaired behaviors and startle/PPI responses in mice. In addition, the two compounds promoted hallucinatory states in zebrafish by reducing the hallucinatory score and swimming activity in hallucinogen-like states.