Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Microbiol ; 286: 109895, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890432

RESUMO

First identified in 2002, diphtheritic stomatitis (DS) is a devastating disease affecting yellow-eyed penguins (Megadyptes antipodes, or hoiho in te reo Maori). The disease is associated with oral lesions in chicks and has caused significant morbidity and mortality. DS is widespread among yellow-eyed penguin chicks on mainland New Zealand yet appears to be absent from the subantarctic population. Corynebacterium spp. have previously been suspected as causative agents yet, due to inconsistent cultures and inconclusive pathogenicity, their role in DS is unclear. Herein, we used a metatranscriptomic approach to identify potential causative agents of DS by revealing the presence and abundance of all viruses, bacteria, fungi and protozoa - together, the infectome. Oral and cloacal swab samples were collected from presymptomatic, symptomatic and recovered chicks along with a control group of healthy adults. Two novel viruses from the Picornaviridae were identified, one of which - yellow-eyed penguin megrivirus - was highly abundant in chicks irrespective of health status but not detected in healthy adults. Tissue from biopsied oral lesions also tested positive for the novel megrivirus upon PCR. We found no overall clustering among bacteria, protozoa and fungi communities at the genus level across samples, although Paraclostridium bifermentans was significantly more abundant in oral microbiota of symptomatic chicks compared to other groups. The detection of a novel and highly abundant megrivirus has sparked a new line of inquiry to investigate its potential association with DS.


Assuntos
Picornaviridae , Spheniscidae , Estomatite , Animais , Corynebacterium , Spheniscidae/microbiologia , Spheniscidae/virologia , Estomatite/veterinária
2.
Virology ; 579: 75-83, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608597

RESUMO

Yellow-eyed penguins (Megadyptes antipodes), or hoiho in te reo Maori, are predicted to become extinct on mainland Aotearoa New Zealand in the next few decades, with infectious disease a significant contributor to their decline. A recent disease phenomenon termed respiratory distress syndrome (RDS) causing lung pathology has been identified in very young chicks. To date, no causative pathogens for RDS have been identified. In 2020 and 2021, the number of chick deaths from suspected RDS increased four- and five-fold, respectively, causing mass mortality with an estimated mortality rate of >90%. We aimed to identify possible pathogens responsible for RDS disease impacting these critically endangered yellow-eyed penguins. Total RNA was extracted from tissue samples collected during post-mortem of 43 dead chicks and subject to metatranscriptomic sequencing and histological examination. From these data we identified a novel and highly abundant gyrovirus (Anelloviridae) in 80% of tissue samples. This virus was most closely related to Gyrovirus 8 discovered in a diseased seabird, while other members of the genus Gyrovirus include Chicken anaemia virus, which causes severe disease in juvenile chickens. No other exogenous viral transcripts were identified in these tissues. Due to the high relative abundance of viral reads and its high prevalence in diseased animals, it is likely that this novel gyrovirus is associated with RDS in yellow-eyed penguin chicks.


Assuntos
Vírus da Anemia da Galinha , Gyrovirus , Spheniscidae , Animais , Galinhas , Nova Zelândia/epidemiologia
4.
Gigascience ; 8(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531675

RESUMO

BACKGROUND: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.


Assuntos
Genoma , Spheniscidae/genética , Animais , Evolução Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA