Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 2): 116207, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244498

RESUMO

Dye-contaminated wastewaters from the printing batik industry are hazardous if discharged into the environment without any treatment. Finding an optimization and reusability assessment of a new fungal-material composite for dye-contaminated wastewater treatment is important for efficiency. The study purposes to optimize fungal mycelia Trametes hirsuta EDN 082 - light expanded clay aggregate (myco-LECA) composite for real priting batik dye wastewater treatment by using Response Surface Methodology with Central Composite Design (RSM-CCD). The factors included myco-LECA weight (2-6 g), wastewater volume (20-80 mL), and glucose concentration (0-10%) were applied for 144 h of incubation time. The result showed that the optimum condition was achieved at 5.1 g myco-LECA, at 20 mL wastewater, and at 9.1% glucose, respectively. In this condition, the decolorization values with an incubation time of 144 h were 90, 93, and 95%, at wavelengths 570, 620, and 670 nm, respectively. A reusability assessment was conducted for 19 cycles and the result showed that decolorization effectiveness was still above 96%. GCMS analysis showed the degradation of most compounds in the wastewater and the degradation products of the wastewater demonstrated detoxification against Vigna radiata and Artemia salina. The study suggests that myco-LECA composite has a good performance and therefore is a promising method for the treatment of printing batik wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Argila , Biodegradação Ambiental , Trametes/metabolismo , Glucose/metabolismo , Corantes
2.
Membranes (Basel) ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34677514

RESUMO

The ultrafiltration membrane process is widely used for fruit juice clarification, yet the occurring of fouling promotes a decline in process efficiency. To reduce the fouling potential in the membrane application in food processing, the use of natural phenolic compounds extracted from cocoa pod husk is investigated. The cocoa pod husk extract (CPHE) was prepared in phenolic nanoparticles form and added into the polymer solution at varying concentrations of 0.5 wt%, 0.75 wt%, and 1.0 wt%, respectively. The composite membrane was made of a cellulose acetate polymer using DMF (dimethylformamide) and DMAc (dimethylacetamide) solvents. The highest permeability of 2.34 L m-2 h-1 bar-1 was achieved by 1.0 wt% CPHE/CA prepared with the DMAc solvent. CPHE was found to reduce the amount of Escherichia coli attached to the membranes by 90.5% and 70.8% for membranes prepared with DMF and DMAc, respectively. It is concluded that CPHE can be used to control biofouling in the membrane for food applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA