Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 387, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195614

RESUMO

Switchable tribological properties of ferroelectrics offer an alternative route to visualize and control ferroelectric domains. Here, we observe the switchable friction and wear behavior of ferroelectrics using a nanoscale scanning probe-down domains have lower friction coefficients and show slower wear rates than up domains and can be used as smart masks. This asymmetry is enabled by flexoelectrically coupled polarization in the up and down domains under a sufficiently high contact force. Moreover, we determine that this polarization-sensitive tribological asymmetry is widely applicable across various ferroelectrics with different chemical compositions and crystalline symmetry. Finally, using this switchable tribology and multi-pass patterning with a domain-based dynamic smart mask, we demonstrate three-dimensional nanostructuring exploiting the asymmetric wear rates of up and down domains, which can, furthermore, be scaled up to technologically relevant (mm-cm) size. These findings demonstrate that ferroelectrics are electrically tunable tribological materials at the nanoscale for versatile applications.

2.
Nanoscale ; 13(3): 1600-1607, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33427828

RESUMO

We study the flexoelectric effect in fifty-four select atomic monolayers using ab initio Density Functional Theory (DFT). Specifically, considering representative materials from each of the Group III monochalcogenides, transition metal dichalcogenides (TMDs), Groups IV, III-V, and V monolayers, Group IV dichalcogenides, Group IV monochalcogenides, transition metal trichalcogenides (TMTs), and Group V chalcogenides, we perform symmetry-adapted DFT simulations to calculate transversal flexoelectric coefficients along the principal directions at practically relevant bending curvatures. We find that the materials demonstrate linear behavior and have similar coefficients along both principal directions, with values for TMTs being up to a factor of five larger than those of graphene. In addition, we find electronic origins for the flexoelectric effect, which increases with monolayer thickness, elastic modulus along the bending direction, and sum of polarizability of constituent atoms.

3.
Nat Commun ; 10(1): 1266, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894544

RESUMO

Converse flexoelectricity is a mechanical stress induced by an electric polarization gradient. It can appear in any material, irrespective of symmetry, whenever there is an inhomogeneous electric field distribution. This situation invariably happens in piezoresponse force microscopy (PFM), which is a technique whereby a voltage is delivered to the tip of an atomic force microscope in order to stimulate and probe piezoelectricity at the nanoscale. While PFM is the premier technique for studying ferroelectricity and piezoelectricity at the nanoscale, here we show, theoretically and experimentally, that large effective piezoelectric coefficients can be measured in non-piezoelectric dielectrics due to converse flexoelectricity.

4.
Phys Rev Lett ; 100(8): 085503, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18352636

RESUMO

We characterize through large-scale simulations the nonlinear elastic response of multiwalled carbon nanotubes (MWCNTs) in torsion and bending. We identify a unified law consisting of two distinct power law regimes in the energy-deformation relation. This law encapsulates the complex mechanics of rippling and is described in terms of elastic constants, a critical length scale, and an anharmonic energy-deformation exponent. The mechanical response of MWCNTs is found to be strongly size dependent, in that the critical strain beyond which they behave nonlinearly scales as the inverse of their diameter. These predictions are consistent with available experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA