Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hypertens ; 40(7): 1314-1326, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762472

RESUMO

BACKGROUND: We recently showed that vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) exhibit overexpression of Sirtuin1 (Sirt1) that contributes to the enhanced expression of Giα proteins implicated in the development of hypertension in SHR. METHOD: The present study investigated if the inhibition of Sirt1 could also ameliorate hypertension in SHR and explore the underlying molecular mechanisms. For this study, a selective inhibitor of Sirt1, EX-527 (5 mg/kg of body weight), was injected intraperitoneally into 8-week-old SHR and age-matched Wistar Kyoto (WKY) rats twice per week for 3 weeks. The blood pressure (BP) and heart rate was measured twice a week by the CODA noninvasive tail cuff method. RESULTS: The high BP and augmented heart rate in SHR was significantly attenuated by EX-527 treatment, which was associated with the suppression of the overexpression of Sirt1 and Giα proteins in heart, VSMC and aorta. In addition, the enhanced levels of superoxide anion, NADPH oxidase activity, overexpression of NADPH oxidase subunits and FOXO1 were attenuated and the decreased levels of endothelial nitric oxide synthase (eNOS), nitric oxide and increased levels of peroxynitrite (ONOO-) and tyrosine nitration in VSMC from SHR were restored to control levels by EX-527 treatment. Furthermore, knockdown of FOXO1 by siRNA also attenuated the overexpression of Giα-2 and NADPH oxidase subunit proteins and restored the decreased expression of eNOS in VSMC from SHR. CONCLUSION: These results suggest that the inhibition of overexpressed Sirt1 and its target FOXO1 through decreasing the enhanced levels of Giα proteins and nitro-oxidative stress attenuates the high BP in SHR.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Hipertensão , Estresse Nitrosativo , Estresse Oxidativo , Sirtuína 1 , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/tratamento farmacológico , NADPH Oxidases , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sirtuína 1/antagonistas & inibidores
2.
J Hypertens ; 40(1): 117-127, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34420010

RESUMO

BACKGROUND: We earlier demonstrated that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit the overexpression of Giα proteins and hyperproliferation that is attributed to the enhanced levels of endogenous angiotensin II (Ang II). In addition, the implication of Sirtuin1 (Sirt1) a histone deacetylase class III family in Ang II-induced hypertension has also been shown. We recently demonstrated that Ang II increased the expression of Sirt1 in aortic VSMC that contributed to the overexpression of Giα proteins. However, whether Sirt1 is overexpressed in VSMC from SHR and is linked to the enhanced expression of Giα proteins and hyperproliferation remains unexplored. METHOD AND RESULTS: In the present study, we show that Sirt1 is upregulated in VSMC from SHR and this upregulation was attenuated by AT1 receptor antagonist losartan. In addition, the inhibition or knockdown of Sirt1 by specific inhibitors EX 527 and NAM and/or siRNA attenuated the enhanced expression of Giα proteins, cell cycle proteins and hyperproliferation of VSMC from SHR. Furthermore, the enhanced levels of reactive oxygen species (ROS), hydrogen peroxide and NADPH oxidase subunits NOX2 and p47phox, increased phosphorylation of EGFR, ERK1/2 and AKT displayed by VSMC from SHR were also attenuated by knocking down of Sirt1 by siRNA. CONCLUSION: In summary, our results demonstrate that Sirt1 is overexpressed in VSMC from SHR which through augmenting oxidative stress contributes to the enhanced expression of Giα proteins, cell cycle proteins and resultant hyperproliferation of VSMC.


Assuntos
Hipertensão , Músculo Liso Vascular , Angiotensina II , Animais , Proliferação de Células , Células Cultivadas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Endogâmicos SHR , Sirtuína 1/genética
3.
Nat Med ; 27(11): 1941-1953, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34608330

RESUMO

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.


Assuntos
Adipócitos/metabolismo , Ciclo Celular/fisiologia , Senescência Celular/fisiologia , Hiperinsulinismo/patologia , Obesidade/patologia , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Ciclina D1/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA