Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
ACS Nano ; 18(24): 15695-15704, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836590

RESUMO

Using viral vectors as gene delivery vehicles for gene therapy necessitates their quality control. Here, we report on nanopore sensing for nondestructively inspecting genomes inside the nanoscale cargoes at the single-molecule level. Using ionic current measurements, we motion-tracked the adeno-associated virus (AAV) vectors as they translocated through a solid-state nanopore. Considering the varying contributions of the electrophoretic forces from the negatively charged internal polynucleotides of different lengths, the nanocargoes carrying longer DNA moved more slowly in the nanochannel. Moreover, ion blockage characteristics revealed their larger volume by up to approximately 3600 nm3 in proportion to the length of single-stranded DNA packaged inside, thereby allowing electrical discriminations of AAV vectors by the gene-derived physical features. The present findings can be a promising tool for the enhanced quality control of AAV products by enabling the screening of empty and intermediate vectors at the single-particle level.


Assuntos
Dependovirus , Vetores Genéticos , Nanoporos , Dependovirus/genética , Vetores Genéticos/química , DNA de Cadeia Simples/química , Humanos
2.
Plant Phenomics ; 6: 0162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572468

RESUMO

Plants are exposed to a variety of environmental stress, and starvation of inorganic phosphorus can be a major constraint in crop production. In plants, in response to phosphate deficiency in soil, miR399, a type of microRNA (miRNA), is up-regulated. By detecting miR399, the early diagnosis of phosphorus deficiency stress in plants can be accomplished. However, general miRNA detection methods require complicated experimental manipulations. Therefore, simple and rapid miRNA detection methods are required for early plant nutritional diagnosis. For the simple detection of miR399, microfluidic technology is suitable for point-of-care applications because of its ability to detect target molecules in small amounts in a short time and with simple manipulation. In this study, we developed a microfluidic device to detect miRNAs from filtered plant extracts for the easy diagnosis of plant growth conditions. To fabricate the microfluidic device, verification of the amine-terminated glass as the basis of the device and the DNA probe immobilization method on the glass was conducted. In this device, the target miRNAs were detected by fluorescence of sandwich hybridization in a microfluidic channel. For plant stress diagnostics using a microfluidic device, we developed a protocol for miRNA detection by validating the sample preparation buffer, filtering, and signal amplification. Using this system, endogenous sly-miR399 in tomatoes, which is expressed in response to phosphorus deficiency, was detected before the appearance of stress symptoms. This early diagnosis system of plant growth conditions has a potential to improve food production and sustainability through cultivation management.

3.
Sci Adv ; 8(6): eabl7002, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148181

RESUMO

Energy dissipation in solid-state nanopores is an important issue for their use as a sensor for detecting and analyzing individual objects in electrolyte solution by ionic current measurements. Here, we report on evaluations of heating via diffusive ion transport in the nanoscale conduits using thermocouple-embedded SiNx pores. We found a linear rise in the nanopore temperature with the input electrical power suggestive of steady-state ionic heat dissipation in the confined nanospace. Meanwhile, the heating efficiency was elucidated to become higher in a smaller pore due to a rapid decrease in the through-water thermal conduction for cooling the fluidic channel. The scaling law suggested nonnegligible influence of the heating to raise the temperature of single-nanometer two-dimensional nanopores by a few kelvins under the standard cross-membrane voltage and ionic strength conditions. The present findings may be useful in advancing our understanding of ion and mass transport phenomena in nanopores.

4.
Small Methods ; 5(9): e2100542, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34928053

RESUMO

Amplification-free genome analysis can revolutionize biology and medicine by uncovering genetic variations among individuals. Here, the authors report on a 3D-integrated nanopore for electrolysis to in situ detection of single-molecule DNA in a cell by ionic current measurements. It consists of a SiO2 multipore sheet and a SiNx nanopore membrane stacked vertically on a Si wafer. Single cell lysis is demonstrated by 106  V m-1 -level electrostatic field focused at the multinanopore. The intracellular molecules are then directly detected as they move through a sensing zone, wherein the authors find telegraphic current signatures reflecting folding degrees of freedom of the millimeter-long polynucleotides threaded through the SiNx nanopore. The present device concept may enable on-chip single-molecule sequencing to multi-omics analyses at a single-cell level.


Assuntos
DNA/análise , Imagem Individual de Molécula/instrumentação , Técnicas Biossensoriais , Humanos , Nanoporos , Dióxido de Silício/química , Imagem Individual de Molécula/métodos , Eletricidade Estática
5.
Anal Methods ; 13(3): 337-344, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33393567

RESUMO

Atomic layer deposition (ALD) is capable of providing an ultrathin layer on high-aspect ratio structures with good conformality and tunable film properties. In this research, we modified the surface of ZnO nanowires through ALD for the fabrication of a ZnO/SiO2 (core/shell) nanowire microfluidic device which we utilized for the capture of CpG-rich single-stranded DNAs (ssDNA). Structural changes of the nanowires while varying the number of ALD cycles were evaluated by statistical analysis and their relationship with the capture efficiency was investigated. We hypothesized that finding the optimum number of ALD cycles would be crucial to ensure adequate coating for successful tuning to the desired surface properties, besides promoting a sufficient trapping region with optimal spacing size for capturing the ssDNAs as the biomolecules traverse through the dispersed nanowires. Using the optimal condition, we achieved high capture efficiency of ssDNAs (86.7%) which showed good potential to be further extended for the analysis of CpG sites in cancer-related genes. This finding is beneficial to the future design of core/shell nanowires for capturing ssDNAs in biomedical applications.


Assuntos
Nanofios , Óxido de Zinco , DNA de Cadeia Simples , Tamanho da Partícula , Dióxido de Silício
6.
Anal Sci ; 37(8): 1139-1145, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33487595

RESUMO

Since DNA analysis is the fundamental process for most applications in biomedical fields, capturing DNAs with high efficiency is important. Here, we used several oxide nanowire microfluidic devices to capture CpG-rich single-stranded DNAs (ssDNAs) in different pH solutions. All the oxide nanowires exhibited the highest capture efficiency around pH 7 with good capture efficiency shown by each metal oxide; ZnO/ZnO core/shell NWs (71.6%), ZnO/Al2O3 core/shell NWs (86.3%) and ZnO/SiO2 core/shell NWs (86.7%). ZnO/Al2O3 core/shell NWs showed the best performance for capturing ssDNAs under varying pH, which suggests its suitability for application in diverse biological fluids. The capturing efficiencies were attributed to the interactions from phosphate backbones and nucleobases of ssDNAs to each nanowire surface. This finding provides a useful platform for highly efficient capture of the target ssDNAs, and these results can be extended for future studies of cancer-related genes in complex biological fluids.


Assuntos
Nanofios , Óxido de Zinco , DNA de Cadeia Simples , Dispositivos Lab-On-A-Chip , Óxidos , Dióxido de Silício
8.
Sci Rep ; 10(1): 15525, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968098

RESUMO

A rapid method for screening pathogens can revolutionize health care by enabling infection control through medication before symptom. Here we report on label-free single-cell identifications of clinically-important pathogenic bacteria by using a polymer-integrated low thickness-to-diameter aspect ratio pore and machine learning-driven resistive pulse analyses. A high-spatiotemporal resolution of this electrical sensor enabled to observe galvanotactic response intrinsic to the microbes during their translocation. We demonstrated discrimination of the cellular motility via signal pattern classifications in a high-dimensional feature space. As the detection-to-decision can be completed within milliseconds, the present technique may be used for real-time screening of pathogenic bacteria for environmental and medical applications.


Assuntos
Infecções Bacterianas/diagnóstico , Técnicas Biossensoriais/métodos , Aprendizado de Máquina , Bacillus cereus/ultraestrutura , Infecções Bacterianas/microbiologia , Eletrônica , Escherichia coli/ultraestrutura , Filtros Microporos , Microscopia Eletrônica de Varredura , Pseudomonas fluorescens/ultraestrutura , Salmonella enterica/ultraestrutura , Staphylococcus aureus/ultraestrutura
9.
ACS Sens ; 5(11): 3398-3403, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32933253

RESUMO

The variability of bioparticles remains a key barrier to realizing the competent potential of nanoscale detection into a digital diagnosis of an extraneous object that causes an infectious disease. Here, we report label-free virus identification based on machine-learning classification. Single virus particles were detected using nanopores, and resistive-pulse waveforms were analyzed multilaterally using artificial intelligence. In the discrimination, over 99% accuracy for five different virus species was demonstrated. This advance is accessed through the classification of virus-derived ionic current signal patterns reflecting their intrinsic physical properties in a high-dimensional feature space. Moreover, consideration of viral similarity based on the accuracies indicates the contributing factors in the recognitions. The present findings offer the prospect of a novel surveillance system applicable to detection of multiple viruses including new strains.


Assuntos
Nanoporos , Infecções Respiratórias , Inteligência Artificial , Humanos , Transporte de Íons , Infecções Respiratórias/diagnóstico , Vírion
10.
Anal Sci ; 36(9): 1125-1129, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32307346

RESUMO

A sparse ZnO nanowire array with aspect ratio of ca. 120 and growth rate of 1 µm/h was synthesized by controlling the density of seeds at the initial stage of nanowire growth. The spatially-separated nanowires were cut off from the growth substrate without breaking, and thus were useful in the construction of a single-nanowire device by photolithography. The device exhibited a linear current-voltage characteristic associated with ohmic contact between ZnO nanowire and electrodes. The device further demonstrated a reliable photoresponse with an IUV/Idark of ∼100 to ultraviolet light irradiation.

11.
ACS Appl Mater Interfaces ; 12(4): 5025-5030, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31891250

RESUMO

Channel surface property is a crucial factor that affects capture-to-translocation dynamics of single-particles in solid-state pores. Here, we show that atomically-thin dielectrics can be used to finely tune the pore wall surface potential. We isotopically coated alumina of atomically controlled thickness on a Si3N4 micropore. The surface zeta-potential in a buffer was found to decrease sharply by 1 nm thick deposition that served as a water-permeable ultra-thin sheet to modulate the effective charge density of the Al2O3/Si3N4 multilayer structure. Further thickening of the atomic layer enabled to control the zeta potential with a thickness at 3.4 mV/nm resolution. Accordingly, we observed concomitant enhancement in the capture rate and the translocation speed of negatively charged polymeric particles by virtue of the mitigated electroosmotic back flow in the functionalized pore channel. This simple method is widely applicable for tailoring the surface charge properties of essentially any sensors and devices working in aqueous media.

12.
Nanoscale ; 11(43): 20475-20484, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647092

RESUMO

The outstanding sensitivity of solid-state nanopore sensors comes at a price of low detection efficiency due to the lack of active means to transfer objects into the nanoscale sensing zone. Here we report on a key technology for high-throughput single-nanoparticle detection which exploits mutual effects of microfluidics control and multipore electrophoresis in nanopore-in-channel units integrated on a thin Si3N4 membrane. Using this novel nanostructure, we demonstrated a proof-of-concept for influenza viruses via hydropressure regulation of mass transport in the fluidic channel for continuous feeding of biosamples into the effective electric field extending out from the nanopores, wherein the feed-through mechanism allowed us to selectively detect charged objects in physiological media such as human saliva. With the versatility of nanopore sensing technologies applicable to analytes of virtually any size from cells to polynucleotides, the present integration strategy may open new avenues for practical ultrasensitive bioanalytical tools.

13.
ACS Sens ; 4(11): 2974-2979, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31576750

RESUMO

Analysis of field-controlled dynamics of ionized substances in a vacuum enables mass spectroscopy of particles and molecules. Analogously, here we report that nanoscale tracking of electrophoretically driven fast motions of single nanoparticles allows label-free and nondestructive detection of their mass in liquid. We fine-traced the time-dependent positions of space-filtered regular motions of particles passed through a thin solid-state nanopore by dissecting the associated ionic blockade phenomena under a scope of multiphysics simulations. Characterizing the viscous-drag-mediated exponential decay in the electrophoretic speed of particles ejected into an electrolyte solution from the nanochannel, we demonstrated the discrimination of nanoparticles by the femtogram mass difference. The present method is viable for mass measurement of virtually any object that can be put through the sensing zone, the sensor capability of which may find many applications such as pathogen screening and proteomics.


Assuntos
Nanopartículas/análise , Nanoporos , Eletrólitos , Espectrometria de Massas , Soluções , Fatores de Tempo
14.
Lab Chip ; 19(8): 1352-1358, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30907393

RESUMO

We report a proof-of-principle demonstration of particle concentration to achieve high-throughput resistive pulse detections of bacteria using a microfluidic-channel-integrated micropore. We fabricated polymeric nanochannels to trap micrometer-sized bioparticles via a simple water pumping mechanism that allowed aggregation-free size-selective particle concentration with negligible loss. Single-bioparticle detections by ionic current measurements were then implemented through releasing and transporting the thus-collected analytes to the micropore. As a result, we attained two orders of magnitude enhancement in the detection throughput by virtue of an accumulation effect via hydrodynamic control. The device concept presented may be useful in developing nanopores and nanochannels for high-throughput single-particle and -molecule analyses.


Assuntos
Dispositivos Lab-On-A-Chip , Escherichia coli/citologia , Hidrodinâmica , Porosidade
15.
J Nanobiotechnology ; 17(1): 40, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871539

RESUMO

Electrophoretic capture of an oversized object on a solid-state nanopore is a useful approach for single-particle analyses via post electrical and optical measurements. Here we report on nanoparticle discriminations by the volume through combining this nanopore trap method with the cross-membrane ionic current measurements. We investigated ion transport through a pore channel being partially occluded by an electrophoretically-drawn nanoparticle at the orifice. We found distinct difference in the amount of current blockage by particles of different sizes. Multiphysics simulations revealed dominant contribution of particle volume over the other properties. We also demonstrated single-particle discriminations of two different sizes in a mixture solution. The present results demonstrate that this electrical capturing is a promising technique to immobilize a target at a single particle level that concomitantly offer wealth of information concerning their volume.


Assuntos
Eletricidade , Nanopartículas/química , Nanoporos , Simulação por Computador , Íons/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
16.
Nanoscale ; 11(16): 7547-7553, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30793714

RESUMO

Parallel integration of multiple channels is a fundamental strategy for high-throughput particle detection in solid-state nanopores wherein understanding and control of crosstalk is an important issue for the post resistive pulse analysis. Here we report on a prominent effect of cross-channel electric field interference on the ionic current blockade by nanoparticles in nano-spaced pore arrays in a thin Si3N4 membrane. We systematically investigated the variations in resistive pulse profiles in multipore systems of various inter-channel distances. Although each pore acted independently when they were formed at excessively far distances, we observed significant cross-pore electrostatic interactions under close-integration that led the multipores to virtually act as a single-pore of equivalent area. As a result of the interference, the resistive pulse height demonstrated bimodal distributions due to the pronounced particle trajectory-dependence of the ionic blockade effects. Most importantly, the overcrowded multi-channel structure was found to deliver significant crosstalk with serious degradation of the sensor sensitivity to particle sizes. The present results provide a guide to design multipore structures regarding the trade-off between the detection throughput and sensor sensitivity.

17.
Nanoscale ; 11(10): 4190-4197, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30793719

RESUMO

We investigated the roles of silicon substrate material compositions in ionic current blockade in solid-state nanopores. When detecting single nanoparticles using an ionic current in a Si3N4 nanopore supported on a doped silicon wafer, resistive pulses were found to be blunted significantly via signal retardation due to predominant contributions of large capacitance at the ultrathin membrane. Unexpectedly, in contrast, changing the substrate material to non-doped silicon led to the sharpening of the spike-like signal feature, suggesting a better temporal resolution of the cross-channel ionic current measurements by virtue of the thick intrinsic semiconductor layer that served to diminish the net chip capacitance. The present results suggest the importance of the choice of Si compositions regarding the capacitance effects to attain better spatiotemporal resolution in solid-state nanopore sensors.

18.
J Am Chem Soc ; 140(48): 16834-16841, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30475615

RESUMO

Immunosensing is a bioanalytical technique capable of selective detections of pathogens by utilizing highly specific and strong intermolecular interactions between recognition probes and antigens. Here, we exploited the molecular mechanism in artificial nanopores for selective single-virus identifications. We designed hemagglutinin antibody mimicking oligopeptides with a weak affinity to influenza A virus. By functionalizing the pore wall surface with the synthetic peptides, we rendered specificity to virion-nanopore interactions. The ligand binding thereof was found to perturb translocation dynamics of specific viruses in the nanochannel, which facilitated digital typing of influenza by the resistive pulse bluntness. As amino acid sequence degrees of freedom can potentially offer variety of recognition ability to the molecular probes, this peptide nanopore approach can be used as a versatile immunosensor with single-particle sensitivity that promises wide applications in bioanalysis including bacterial and viral screening to infectious disease diagnosis.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Nanoporos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Galinhas , Ouro/química , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Compostos de Silício/química , Carga Viral/métodos
19.
ACS Sens ; 3(12): 2693-2701, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30421923

RESUMO

Utilization of multiple-channel structure is a promising way of accomplishing high-throughput detections of analytes in solid-state pore sensors. Here we report on systematic investigation of particle capture efficiency in Si3N4 multipore systems of various array configurations. We demonstrated enhanced detection throughput with increasing numbers of pore channels in a membrane. Meanwhile, we also observed significant contributions of the interchannel crosstalk in closely integrated multipores that tended to deteriorate throughput performance by causing shrinkage of the absorption zone via the interference-derived weakening of the electric field around the pore orifice. At the same time, the interference-derived electric field distributions were also found to diminish the electroosmotic contributions to the particle capture efficiency. The present findings can be useful in designing pore arrays with optimal throughput performance.


Assuntos
Nanoporos , Compostos de Silício/química , Simulação por Computador , Eletro-Osmose , Poliestirenos/química
20.
Sci Rep ; 8(1): 16305, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390013

RESUMO

Rapid diagnosis of flu before symptom onsets can revolutionize our health through diminishing a risk for serious complication as well as preventing infectious disease outbreak. Sensor sensitivity and selectivity are key to accomplish this goal as the number of virus is quite small at the early stage of infection. Here we report on label-free electrical diagnostics of influenza based on nanopore analytics that distinguishes individual virions by their distinct physical features. We accomplish selective resistive-pulse sensing of single flu virus having negative surface charges in a physiological media by exploiting electroosmotic flow to filter contaminants at the Si3N4 pore orifice. We demonstrate identifications of allotypes with 68% accuracy at the single-virus level via pattern classifications of the ionic current signatures. We also show that this discriminability becomes >95% under a binomial distribution theorem by ensembling the pulse data of >20 virions. This simple mechanism is versatile for point-of-care tests of a wide range of flu types.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Humana/diagnóstico , Nanotecnologia/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Eletricidade , Humanos , Vírus da Influenza A/química , Influenza Humana/virologia , Transporte de Íons , Aprendizado de Máquina , Nanoporos , Nanotecnologia/instrumentação , Sensibilidade e Especificidade , Compostos de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA