Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(11): 115001, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261432

RESUMO

This paper reports on the design and characteristics of a compact module integrating an optical displacement sensor and an electromagnetic actuator for use with vibration-isolation systems installed in KAGRA, the 3-km baseline gravitational-wave detector in Japan. In the technical concept, the module belongs to a family tree of similar modules used in other interferometric gravitational-wave detector projects. After the initial test run of KAGRA in 2016, the sensor part, which is a type of slot sensor, was modified by increasing the spacing of the slot from 5 mm to 15 mm to avoid the risk of mechanical interference with the sensor flag. We confirm that the sensor performance is comparable to that of the previous design despite the modification. We also confirm that the sensor noise is consistent with the theoretical noise budget. The noise level is 0.5 nm/Hz1/2 at 1 Hz and 0.1 nm/Hz1/2 at 10 Hz, and the linear range of the sensor is 0.7 mm or more. We measured the response of the actuator to be 1 N/A and also measured the resistances and inductances of coils of the actuators to confirm consistency with theory. Coupling coefficients among the different degrees of freedom were also measured and shown to be negligible, varying little between designs. A potential concern about thermal noise contribution due to eddy current loss is discussed. As of 2020, 42 of the modules are in operation at the site.

2.
Phys Rev Lett ; 124(17): 171101, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412296

RESUMO

The astrophysical reach of current and future ground-based gravitational-wave detectors is mostly limited by quantum noise, induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be an effective strategy to mitigate such quantum noise and it is currently used in advanced detectors. However, current squeezing cannot improve the noise across the whole spectrum because of the Heisenberg uncertainty principle: when shot noise at high frequencies is reduced, radiation pressure at low frequencies is increased. A broadband quantum noise reduction is possible by using a more complex squeezing source, obtained by reflecting the squeezed vacuum off a Fabry-Perot cavity, known as filter cavity. Here we report the first demonstration of a frequency-dependent squeezed vacuum source able to reduce quantum noise of advanced gravitational-wave detectors in their whole observation bandwidth. The experiment uses a suspended 300-m-long filter cavity, similar to the one planned for KAGRA, Advanced Virgo, and Advanced LIGO, and capable of inducing a rotation of the squeezing ellipse below 100 Hz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA