Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Phys Chem Chem Phys ; 26(14): 10998-11013, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526443

RESUMO

The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid ß, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to model membranes formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the model membranes take an active role in the reaction. The binding of α synuclein to the model membranes immediately induces a major structural change in the lipid assembly, which leads to a break-up into small and mostly disc- or rod-like lipid-protein particles. This transition can be reversed by temperature changes or proteolytic protein removal. Incubation of the small lipid-α-synuclein particles for several hours, however, leads to amyloid fibril formation, whereby the lipids are incorporated into the amyloid fibrils.


Assuntos
Peptídeos beta-Amiloides , alfa-Sinucleína , alfa-Sinucleína/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Amiloide/química , Lipídeos
2.
Sci Rep ; 13(1): 16516, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783694

RESUMO

Bacterial colonization is mediated by fimbriae, which are thin hair-like appendages dispersed from the bacterial surface. The aggregative adherence fimbriae from enteroaggregative E. coli are secreted through the outer membrane and consist of polymerized minor and major pilin subunits. Currently, the understanding of the structural morphology and the role of the minor pilin subunit in the polymerized fimbriae are limited. In this study we use small-angle X-ray scattering to reveal the structural morphology of purified fimbriae in solution. We show that the aggregative fimbriae are compact arrangements of subunit proteins Agg5A + Agg3B which are assembled pairwise on a flexible string rather than extended in relatively straight filaments. Absence of the minor subunit leads to less compact fimbriae, but did not affect the length. The study provides novel insights into the structural morphology and assembly of the aggregative adherence fimbriae. Our study suggests that the minor subunit is not located at the tip of the fimbriae as previously speculated but has a higher importance for the assembled fimbriae by affecting the global structure.


Assuntos
Escherichia coli , Proteínas de Fímbrias , Proteínas de Fímbrias/metabolismo , Escherichia coli/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Aderência Bacteriana , Fímbrias Bacterianas/metabolismo
3.
J Biol Chem ; 299(11): 105262, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734553

RESUMO

A considerable number of lytic polysaccharide monooxygenases (LPMOs) and other carbohydrate-active enzymes are modular, with catalytic domains being tethered to additional domains, such as carbohydrate-binding modules, by flexible linkers. While such linkers may affect the structure, function, and stability of the enzyme, their roles remain largely enigmatic, as do the reasons for natural variation in length and sequence. Here, we have explored linker functionality using the two-domain cellulose-active ScLPMO10C from Streptomyces coelicolor as a model system. In addition to investigating the WT enzyme, we engineered three linker variants to address the impact of both length and sequence and characterized these using small-angle X-ray scattering, NMR, molecular dynamics simulations, and functional assays. The resulting data revealed that, in the case of ScLPMO10C, linker length is the main determinant of linker conformation and enzyme performance. Both the WT and a serine-rich variant, which have the same linker length, demonstrated better performance compared with those with either a shorter linker or a longer linker. A highlight of our findings was the substantial thermostability observed in the serine-rich variant. Importantly, the linker affects thermal unfolding behavior and enzyme stability. In particular, unfolding studies show that the two domains unfold independently when mixed, whereas the full-length enzyme shows one cooperative unfolding transition, meaning that the impact of linkers in biomass-processing enzymes is more complex than mere structural tethering.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Modelos Moleculares , Dobramento de Proteína , Domínio Catalítico , Celulose/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Serina , Estabilidade Proteica , Ativação Enzimática , Simulação de Acoplamento Molecular , Streptomyces/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estrutura Terciária de Proteína
4.
Elife ; 122023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37232489

RESUMO

Class 1 cytokine receptors transmit signals through the membrane by a single transmembrane helix to an intrinsically disordered cytoplasmic domain that lacks kinase activity. While specific binding to phosphoinositides has been reported for the prolactin receptor (PRLR), the role of lipids in PRLR signaling is unclear. Using an integrative approach combining nuclear magnetic resonance spectroscopy, cellular signaling experiments, computational modeling, and simulation, we demonstrate co-structure formation of the disordered intracellular domain of the human PRLR, the membrane constituent phosphoinositide-4,5-bisphosphate (PI(4,5)P2) and the FERM-SH2 domain of the Janus kinase 2 (JAK2). We find that the complex leads to accumulation of PI(4,5)P2 at the transmembrane helix interface and that the mutation of residues identified to interact specifically with PI(4,5)P2 negatively affects PRLR-mediated activation of signal transducer and activator of transcription 5 (STAT5). Facilitated by co-structure formation, the membrane-proximal disordered region arranges into an extended structure. We suggest that the co-structure formed between PRLR, JAK2, and PI(4,5)P2 locks the juxtamembrane disordered domain of the PRLR in an extended structure, enabling signal relay from the extracellular to the intracellular domain upon ligand binding. We find that the co-structure exists in different states which we speculate could be relevant for turning signaling on and off. Similar co-structures may be relevant for other non-receptor tyrosine kinases and their receptors.


Assuntos
Janus Quinase 2 , Receptores da Prolactina , Humanos , Proteínas de Transporte/metabolismo , Janus Quinase 2/metabolismo , Fosforilação , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Transdução de Sinais , Fator de Transcrição STAT5/metabolismo
5.
J Colloid Interface Sci ; 635: 611-621, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36634513

RESUMO

Recent advances in protein expression protocols, sample handling, and experimental set up of small-angle scattering experiments have allowed users of the technique to structurally investigate biomolecules of growing complexity and structural disorder. Notable examples include intrinsically disordered proteins, multi-domain proteins and membrane proteins in suitable carrier systems. Here, we outline a modeling scheme for calculating the scattering profiles from such complex samples. This kind of modeling is necessary for structural information to be refined from the corresponding data. The scheme bases itself on a hybrid of classical form factor based modeling and the well-known spherical harmonics-based formulation of small-angle scattering amplitudes. Our framework can account for flexible domains alongside other structurally elaborate components of the molecular system in question. We demonstrate the utility of this modeling scheme through a recent example of a structural model of the growth hormone receptor membrane protein in a phospholipid bilayer nanodisc which is refined against experimental SAXS data. Additionally we investigate how the scattering profiles from the complex would appear under different scattering contrasts. For each contrast situation we discuss what structural information is contained and the related consequences for modeling of the data.


Assuntos
Proteínas Intrinsicamente Desordenadas , Modelos Moleculares , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas Intrinsicamente Desordenadas/química
6.
J Colloid Interface Sci ; 629(Pt A): 794-804, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36099847

RESUMO

Interactions between biomolecules are ubiquitous in nature and crucial to many applications including vaccine development; environmentally friendly textile detergents; and food formulation. Using small angle X-ray scattering and structure-based molecular simulations, we explore protein-protein interactions in dilute to semi-concentrated protein solutions. We address the pertinent question, whether interaction models developed at infinite dilution can be extrapolated to concentrated regimes? Our analysis is based on measured and simulated osmotic second virial coefficients and solution structure factors at varying protein concentration and for different variants of the protein Thermomyces Lanuginosus Lipase (TLL). We show that in order to span the dilute and semi-concentrated regime, any model must carefully capture the balance between spatial and orientational correlations as the protein concentration is elevated. This requires consideration of the protein surface morphology, including possible patch interactions. Experimental data for TLL is most accurately described when assuming a patchy interaction, leading to dimer formation. Our analysis supports that the dimeric proteins predominantly exist in their open conformation where the active site is exposed, thereby maximising hydrophobic attractions that promote inter-protein alignment.


Assuntos
Ascomicetos , Eurotiales , Detergentes , Ascomicetos/metabolismo , Lipase/química , Proteínas , Soluções
7.
Biochimie ; 205: 3-26, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35963461

RESUMO

We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.


Assuntos
Proteínas de Membrana , Nanoestruturas , Proteínas de Membrana/metabolismo , Bicamadas Lipídicas/química , Nanoestruturas/química
8.
Nanoscale Adv ; 4(21): 4526-4534, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341300

RESUMO

Supported lipid bilayers (SLBs) are commonly used as model systems mimicking biological membranes. Recently, we reported a new method to produce SLBs with incorporated membrane proteins, which is based on the application of peptide discs [Luchini et al., Analytical Chemistry, 2020, 92, 1081-1088]. Peptide discs are small discoidal particles composed of a lipid core and an outer belt of self-assembled 18A peptides. SLBs including membrane proteins can be formed by depositing the peptide discs on a solid support and subsequently removing the peptide by buffer rinsing. Here, we introduce a new variant of the 18A peptide, named dark peptide (d18A). d18A exhibits UV absorption at 214 nm, whereas the absorption at 280 nm is negligible. This improves sample preparation as it enables a direct quantification of the membrane protein concentration in the peptide discs by measuring UV absorption at 280 nm. We describe the application of the peptide discs prepared with d18A (dark peptide discs) to produce SLBs with a membrane protein, synaptobrevin 2 (VAMP2). The collected data showed the successful formation of SLBs with high surface coverage and incorporation of VAMP2 in a single orientation with the extramembrane domain exposed towards the bulk solvent. Compared to 18A, we found that d18A was more efficiently removed from the SLB. Our data confirmed the structural organisation of VAMP2 as including both α-helical and ß-sheet secondary structure. We further verified the orientation of VAMP2 in the SLBs by characterising the binding of VAMP2 with α-synuclein. These results point at the produced SLBs as relevant membrane models for biophysical studies as well as nanostructured biomaterials.

9.
J Colloid Interface Sci ; 623: 294-305, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35594588

RESUMO

Tissue factor (TF) is a membrane protein involved in blood coagulation. TF initiates a cascade of proteolytic reactions, ultimately leading to the formation of a blood clot. The first reaction consists of the binding of the coagulation factor VII and its conversion to the activated form, FVIIa. Here, we combined experimental, i.e. quartz crystal microbalance with dissipation monitoring and neutron reflectometry, and computational, i.e. molecular dynamics (MD) simulation, methods to derive a complete structural model of TF and TF/FVIIa complex in a lipid bilayer. This model shows that the TF transmembrane domain (TMD), and the flexible linker connecting the TMD to the extracellular domain (ECD), define the location of the ECD on the membrane surface. The average orientation of the ECD relative to the bilayer surface is slightly tilted towards the lipid headgroups, a conformation that we suggest is promoted by phosphatidylserine lipids, and favours the binding of FVIIa. On the other hand, the formation of the TF/FVIIa complex induces minor changes in the TF structure, and reduces the conformational freedom of both TF and FVIIA. Altogether we describe the protein-protein and protein-lipid interactions favouring blood coagulation, but also instrumental to the development of new drugs.


Assuntos
Fator VIIa , Tromboplastina , Fator VIIa/química , Fator VIIa/metabolismo , Bicamadas Lipídicas/química , Modelos Estruturais , Simulação de Dinâmica Molecular , Tromboplastina/química , Tromboplastina/metabolismo
10.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 483-493, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362471

RESUMO

The combination of online size-exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) is rapidly becoming a key technique for structural investigations of elaborate biophysical samples in solution. Here, a novel model-refinement strategy centred around the technique is outlined and its utility is demonstrated by analysing data series from several SEC-SAXS experiments on phospholipid bilayer nanodiscs. Using this method, a single model was globally refined against many frames from the same data series, thereby capturing the frame-to-frame tendencies of the irradiated sample. These are compared with models refined in the traditional manner, in which refinement is based on the average profile of a set of consecutive frames from the same data series without an in-depth comparison of individual frames. This is considered to be an attractive model-refinement scheme as it considerably lowers the total number of parameters refined from the data series, produces tendencies that are automatically consistent between frames, and utilizes a considerably larger portion of the recorded data than is often performed in such experiments. Additionally, a method is outlined for correcting a measured UV absorption signal by accounting for potential peak broadening by the experimental setup.


Assuntos
Fosfolipídeos , Cromatografia em Gel , Fosfolipídeos/química , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Elife ; 112022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129435

RESUMO

The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Transporte Biológico , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
12.
Biochim Biophys Acta Biomembr ; 1864(6): 183884, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182589

RESUMO

Nanodiscs are used to stabilize membrane proteins in a lipid environment and enable investigations of the function and structure of these. Membrane proteins are often only available in small amounts, and thus the stability and ease of use of the nanodiscs are essential. We have recently explored circularizing and supercharging membrane scaffolding proteins (MSPs) for nanodisc formation and found increased temporal stability at elevated temperatures. In the present study, we investigate six different supercharged MSPs and their ability to form nanodiscs: three covalently circularized and the three non-circularized, linear versions. Using standard reconstitution protocols using cholate as the reconstitution detergent, we found that two of the linear constructs formed multiple lipid-protein species, whereas adding n-Dodecyl-B-D-maltoside (DDM) with the cholate in the reconstitution gave rise to single-species nanodisc formation for these MSPs. For all MSPs, the formed nanodiscs were analyzed by small-angle X-ray scattering (SAXS), which showed similar structures for each MSP, respectively, suggesting that the structures of the formed nanodiscs are independent of the initial DDM content, as long as cholate is present. Lastly, we incorporated the membrane protein proteorhodopsin into the supercharged nanodiscs and observed a considerable increase in incorporation yield with the addition of DDM. For the three circularized MSPs, a single major species appeared in the size exclusion chromatography (SEC) chromatogram, suggesting monodisperse nanodiscs with proteorhodopsin incorporated, which is in strong contrast to the samples without DDM showing almost no incorporation and high polydispersity.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Colatos , Detergentes/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504004

RESUMO

Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.


Assuntos
Proteínas de Bactérias/química , Ativação do Canal Iônico , Canais Iônicos de Abertura Ativada por Ligante/química , Nêutrons , Multimerização Proteica , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Cianobactérias/metabolismo , Simulação de Dinâmica Molecular
14.
Anal Chem ; 93(37): 12698-12706, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34498849

RESUMO

Isothermal titration calorimetry (ITC) is a widely used method to determine binding affinities and thermodynamics in ligand-receptor interactions, but it also has the capability of providing detailed information on much more complex events. However, the lack of available methods to analyze ITC data is limiting the use of the technique in such multifaceted cases. Here, we present the software ANISPROU. Through a semi-empirical approach that allows for extraction of quantitative information from complex ITC data, ANISPROU solves an inverse problem where three parameters describing a set of predefined functions must be found. In analogy to strategies adopted in other scientific fields, such as geophysics, imaging, and many others, it employs an optimization algorithm which minimizes the difference between calculated and experimental data. In contrast to the existing methods, ANISPROU provides automated and objective analysis of ITC data on sodium dodecyl sulfate (SDS)-induced protein unfolding, and in addition, more information can be extracted from the data. Here, data series on SDS-mediated protein unfolding is analyzed, and binding isotherms and thermodynamic information on the unfolding events are extracted. The obtained binding isotherms as well as the enthalpy of different events are similar to those obtained using the existing manual methods, but our methodology ensures a more robust result, as the entire data set is used instead of single data points. We foresee that ANISPROU will be useful in other cases with complex enthalpograms, for example, in cases with coupled interactions in biomolecular, polymeric, and amphiphilic systems including cases where both structural changes and interactions occur simultaneously.


Assuntos
Tensoativos , Calorimetria , Ligantes , Ligação Proteica , Dodecilsulfato de Sódio , Termodinâmica
15.
Mol Pharm ; 18(9): 3272-3280, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34351780

RESUMO

Two different insulin analogues, insulin degludec and lithocholyl insulin, were studied by small-angle X-ray scattering with respect to their self-assembly and interactions in solution at different concentrations of insulin and salt, NaCl. Very different behavior was observed for the two. Insulin degludec, linked to a hexadecanedioic acid, consistently formed di-hexamers, without any further oligomeric growth upon screening of electrostatic repulsions, indicating a stable di-hexamer unit without further oligomerization, as expected in the presence of phenol. The other insulin analogue, linked to the sterol lithocholic acid, formed n-hexamers with n ranging from 1 to 15, increasing with NaCl concentration and insulin concentration, indicating attractive forces in competition with the electrostatic repulsion and solution entropy. At the highest concentration of insulin and NaCl, a liquid crystal phase was observed, which has not previously been identified, featuring a quadratic structure organized into layers, which might hold interesting properties for pharmaceutical applications.


Assuntos
Insulina de Ação Prolongada/metabolismo , Insulina/análogos & derivados , Sequência de Aminoácidos , Química Farmacêutica , Insulina/química , Insulina/metabolismo , Insulina de Ação Prolongada/química , Modelos Moleculares , Multimerização Proteica , Salinidade , Espalhamento a Baixo Ângulo , Difração de Raios X
16.
Sci Adv ; 7(27)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34193419

RESUMO

Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs. The hGHR domains reorient freely, resulting in a broad structural ensemble, emphasizing the need to take an ensemble view on signaling of relevance to disease states. The structure provides the first experimental model of any full-length cytokine receptor in a lipid membrane and exemplifies how integrating experimental data from several techniques computationally may access structures of membrane proteins with long, disordered regions, a widespread phenomenon in biology.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Humanos , Proteínas de Membrana/química , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
Langmuir ; 37(22): 6681-6690, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038130

RESUMO

Nanodiscs based on membrane scaffold proteins (MSPs) and phospholipids are used as membrane mimics to stabilize membrane proteins in solution for structural and functional studies. Combining small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and time-resolved small-angle neutron scattering (TR-SANS), we characterized the structure and lipid bilayer properties of five different nanodiscs made with dimyristoylphosphatidylcholine and different MSPs varying in size, charge, and circularization. Our SAXS modeling showed that the structural parameters of the embedded lipids are all similar, irrespective of the MSP properties. DSC showed that the lipid packing is not homogeneous in the nanodiscs and that a 20 Å wide boundary layer of lipids with perturbed packing is located close to the MSP, while the packing of central lipids is tighter than in large unilamellar vesicles. Finally, TR-SANS showed that lipid exchange rates in nanodiscs decrease with increasing nanodisc size and are lower for the nanodiscs made with supercharged MSPs compared to conventional nanodiscs. Altogether, the results provide a thorough biophysical understanding of the nanodisc as a model membrane system, which is important in order to carry out and interpret experiments on membrane proteins embedded in such systems.

18.
Nanoscale ; 13(18): 8467-8473, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33984105

RESUMO

Metal ion-induced self-assembly (SA) of proteins into higher-order structures can provide new, dynamic nano-assemblies. Here, the synthesis and characterization of a human insulin (HI) analog modified at LysB29 with the tridentate chelator 2,2':6',2''-terpyridine (Tpy) is described. SA of this new insulin analog (LysB29Tpy-HI) in the presence of the metal ions Fe2+ and Eu3+ at different concentrations was studied in solution by fluorescence luminescence and CD spectroscopy, dynamic light scattering, and small-angle X-ray scattering, while surface assembly was probed by AFM. Unique oligomerization was observed in solution, as Fe2+ yielded small magenta-colored discrete non-native assemblies, while Eu3+ caused the formation of large fractal assemblies. Binding of both metal ions to Tpy was demonstrated spectroscopically, and emission lifetime experiments revealed a distinct Eu3+ coordination geometry that included two water molecules. SAXS suggested that LysB29Tpy-HI with Fe2+ oligomerized to a discrete, roughly octameric species, while LysB29Tpy-HI with Eu3+ gave very large assemblies that could be modelled as fractals. The fractal dimensionality increased with the Eu3+ concentration. We propose that this is a consequence of Eu3+ binding to both Tpy and to free carboxylic acid groups on the insulin surface. LysB29Tpy-HI maintained insulin receptor affinity, and showed extended blood glucose lowering and plasma concentration after subcutaneous injection in rats. The combination of metal ion directed SA and native SA provides control of nano-scale fractal dimensionality and points towards use in therapeutics.


Assuntos
Fractais , Insulina , Animais , Ratos , Espalhamento a Baixo Ângulo , Análise Espectral , Difração de Raios X
19.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 176-193, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33559607

RESUMO

New software, called Marbles, is introduced that employs SAXS intensities to predict the shape of membrane proteins embedded into membrane nanodiscs. To gain computational speed and efficient convergence, the strategy is based on a hybrid approach that allows one to account for the contribution of the nanodisc to the SAXS intensity through a semi-analytical model, while the embedded membrane protein is treated as a set of beads, similarly to as in well known ab initio methods. The reliability and flexibility of this approach is proved by benchmarking the code, implemented in C++ with a Python interface, on a toy model and two proteins with very different geometry and size.


Assuntos
Proteínas de Membrana/química , Software , Humanos , Conformação Proteica
20.
Elife ; 102021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33480354

RESUMO

Properdin stabilizes convertases formed upon activation of the complement cascade within the immune system. The biological activity of properdin depends on the oligomerization state, but whether properdin oligomers are rigid and how their structure links to function remains unknown. We show by combining electron microscopy and solution scattering, that properdin oligomers adopt extended rigid and well-defined conformations which are well approximated by single models of apparent n-fold rotational symmetry with dimensions of 230-360 Å. Properdin monomers are pretzel-shaped molecules with limited flexibility. In solution, properdin dimers are curved molecules, whereas trimers and tetramers are close to being planar molecules. Structural analysis indicates that simultaneous binding through all binding sites to surface-linked convertases is unlikely for properdin trimer and tetramers. We show that multivalency alone is insufficient for full activity in a cell lysis assay. Hence, the observed rigid extended oligomer structure is an integral component of properdin function.


Assuntos
Properdina/química , Sítios de Ligação , Células HEK293 , Humanos , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA