RESUMO
This study aimed to assess post-harvest contamination with mycotoxins in the context of the geographic and agroclimatic conditions in Romania in 2012â»2015, a period that was characterized by extreme meteorological events and the effects of climate change. The samples were randomly sampled from five agricultural regions of Romania and analyzed for mycotoxins by enzyme-linked immunosorbent assay. An SPSS analysis was done to explore correlations between mycotoxins (deoxynivalenol-DON, aflatoxins-AF, ochratoxin A-OTA, zearalenone-ZEA), product types (raw cereal, processed cereal, cereal-based food), geographic coordinates (latitude, longitude, agricultural region), and agroclimatic factors (air temperature, precipitation, soil moisture reserve, aridity index, soil type). In the southeast part of the Southern Plain and Dobrogea (Baragan Plain, located at 44â»45° N, 26â»27° E), contamination with AF and OTA was higher in raw and processed cereals (maize in silo, silo corn germs) in the dry years (2012 and 2013), and contamination with DON was high in processed cereals (wheat flour type 450) in the rainy year (2014). DON and OTA contamination were significantly correlated with cumulative precipitation in all years, while AF and ZEA contamination were non-significantly correlated with climatic factors and aridity indices. The distribution of mycotoxins by product type and the non-robust correlations between post-harvest mycotoxins and agrometeorological factors could be explained by the use of quality management systems that control cereal at warehouse receptions, performant processing technologies, and the quality of storage spaces of agri-food companies. The Baragan Plain is Romania's most sensitive area to the predicted climate change in southeast Europe, which may be associated with its increased cereal contamination with AF and OTA.
Assuntos
Grão Comestível/química , Contaminação de Alimentos/análise , Micotoxinas/análise , Agricultura , Monitoramento Ambiental , Geografia , Romênia , Tempo (Meteorologia)RESUMO
The present work is concerned with the manganese complexes of 5,10,15,20-tetraphenylporphyrin and of 5,10,15,20-tetra(3-hydroxyphenyl)porphyrin, which were prepared by metallation of the corresponding porphyrin ligands, and the study of their spectroscopic and photophysical behavior under strongly acidic and alkaline conditions. The second objective was to obtain and study some new hybrid materials, with special optoelectronic and surface properties, by impregnation of silica gels obtained by one step acid and by two steps acid-base catalysis with these Mn-porphyrins. The resulting nanomaterials exhibited interesting bathochromic and hyperchromic effects of their second band in the emission spectra in comparison with the Mn-porphyrins and also they have distinct orientation of the aggregates on surfaces, as shown by AFM images, making them useful for applications in medicine, formulation of sensors and for environmental-friendly catalysts for photodegradation of organic compounds.