Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Death Discov ; 10(1): 163, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570483

RESUMO

Sequence variants in the HERC2 gene are associated with a significant reduction in HERC2 protein levels and cause a neurodevelopmental disorder known as the HERC2-related disorder, which shares clinical features with Angelman syndrome, including global developmental delay, intellectual disability, autism, and movement disorders. Remarkably, the HERC2 gene is commonly deleted in individuals with Angelman syndrome, suggesting a potential contribution of HERC2 to the pathophysiology of this disease. Given the known critical role of autophagy in brain development and its implication in neurodevelopmental diseases, we undertook different experimental approaches to monitor autophagy in fibroblasts derived from individuals affected by the HERC2-related disorder. Our findings reveal alterations in the levels of the autophagy-related protein LC3. Furthermore, experiments with lysosomal inhibitors provide confirmation of an upregulation of the autophagy pathway in these patient-derived cells. Mechanistically, we corroborate an interaction between HERC2 and the deubiquitylating enzyme USP20; and demonstrate that HERC2 deficiency leads to increased USP20 protein levels. Notably, USP20 upregulation correlates with enhanced stability of the autophagy initiating kinase ULK1, highlighting the role of HERC2 as an autophagy regulator factor through the USP20-ULK1 axis. Moreover, we show that p38 acts as a modulator of this pathway, since p38 activation disrupts HERC2-USP20 interaction, leading to increased USP20 and LC3-II protein levels. Together, these findings uncover a previously unknown role for HERC2 in autophagy regulation and provide insights into the pathomolecular mechanisms underlying the HERC2-related disorder and Angelman syndrome.

2.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169859

RESUMO

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Assuntos
Arginase , Microglia , Animais , Feminino , Camundongos , Arginase/genética , Arginase/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo
3.
Cell Reprogram ; 24(5): 294-303, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35802497

RESUMO

Mitochondrial diseases are a heterogeneous group of rare genetic disorders caused by mutations in nuclear or mitochondrial DNA (mtDNA). These diseases are frequently multisystemic, although mainly affect tissues that require large amounts of energy such as the brain. Mutations in mitochondrial transfer RNA (mt-tRNA) lead to defects in protein translation that may compromise some or all mtDNA-encoded proteins. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS) syndrome is mainly caused by the m.3243A>G mutation in the mt-tRNALeu(UUR) (MT-TL1) gene. Owing to the lack of proper animal models, several cellular models have been developed to study the disease, providing insight in the pathophysiological mechanisms of MELAS. In this study, we show a successful direct conversion of MELAS patient-derived fibroblasts into induced neurons (iNs) for the first time, as well as an electrophysiological characterization of iNs cocultured with astrocytes. In addition, we performed bioenergetics analysis to study the consequences of m.3243A>G mutation in this neuronal model of MELAS syndrome.


Assuntos
Acidose Láctica , Síndrome MELAS , Acidente Vascular Cerebral , Acidose Láctica/genética , DNA Mitocondrial/genética , Humanos , Síndrome MELAS/genética , Mutação , Neurônios , Acidente Vascular Cerebral/genética
4.
Neurobiol Dis ; 165: 105649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122944

RESUMO

BACKGROUND: PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE: In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS: Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS: PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS: PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.


Assuntos
Distrofias Neuroaxonais , Doenças Neurodegenerativas , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Doenças Neurodegenerativas/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia
5.
Semin Cell Dev Biol ; 132: 5-15, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34848147

RESUMO

The HERC protein family is one of three subfamilies of Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases. Six HERC genes have been described in humans, two of which encode Large HERC proteins -HERC1 and HERC2- with molecular weights above 520 kDa that are constitutively expressed in the brain. There is a large body of evidence that mutations in these Large HERC genes produce clinical syndromes in which key neurodevelopmental events are altered, resulting in intellectual disability and other neurological disorders like epileptic seizures, dementia and/or signs of autism. In line with these consequences in humans, two mice carrying mutations in the Large HERC genes have been studied quite intensely: the tambaleante mutant for Herc1 and the Herc2+/530 mutant for Herc2. In both these mutant mice there are clear signs that autophagy is dysregulated, eliciting cerebellar Purkinje cell death and impairing motor control. The tambaleante mouse was the first of these mice to appear and is the best studied, in which the Herc1 mutation elicits: (i) delayed neural transmission in the peripheral nervous system; (ii) impaired learning, memory and motor control; and (iii) altered presynaptic membrane dynamics. In this review, we discuss the information currently available on HERC proteins in the nervous system and their biological activity, the dysregulation of which could explain certain neurodevelopmental syndromes and/or neurodegenerative diseases.


Assuntos
Transmissão Sináptica , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Mutação , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Transtornos do Neurodesenvolvimento/genética , Doenças Neurodegenerativas/genética
6.
Front Neuroanat ; 14: 592797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328904

RESUMO

Mutations in the human HERC1 E3 ubiquitin ligase protein develop intellectual disability. The tambaleante (tbl) mouse carries a HERC1 mutation characterized by cerebellar ataxia due of adult cerebellar Purkinje cells death by extensive autophagy. Our previous studies demonstrated that both the neuromuscular junction and the peripheral nerve myelin sheaths are also affected in this mutant. Moreover, there are signs of dysregulated autophagy in the central nervous system in the tbl mouse, affecting spinal cord motor neurons, and pyramidal neurons of the neocortex and the hippocampal CA3 region. The tbl mutation affects associative learning, with absence of short- and long-term potentiation in the lateral amygdala, altered spinogenesis in their neurons, and a dramatic decrease in their glutamatergic input. To assess whether other brain areas engaged in learning processes might be affected by the tbl mutation, we have studied the tbl hippocampus using behavioral tests, ex vivo electrophysiological recordings, immunohistochemistry, the Golgi-Cox method and transmission electron microscopy. The tbl mice performed poorly in the novel-object recognition, T-maze and Morris water maze tests. In addition, there was a decrease in glutamatergic input while the GABAergic one remains unaltered in the hippocampal CA1 region of tbl mice, accompanied by changes in the dendritic spines, and signs of cellular damage. Moreover, the proportions of immature and mature neurons in the dentate gyrus of the tbl hippocampus differ relative to the control mice. Together, these observations demonstrate the important role of HERC1 in regulating synaptic activity during learning.

7.
Sci Rep ; 10(1): 12057, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694577

RESUMO

HERC1 is a ubiquitin ligase protein, which, when mutated, induces several malformations and intellectual disability in humans. The animal model of HERC1 mutation is the mouse tambaleante characterized by: (1) overproduction of the protein; (2) cerebellar Purkinje cells death by autophagy; (3) dysregulation of autophagy in spinal cord motor neurons, and CA3 and neocortical pyramidal neurons; (4) impairment of associative learning, linked to altered spinogenesis and absence of LTP in the lateral amygdala; and, (5) motor impairment due to delayed action potential transmission, decrease synaptic transmission efficiency and altered myelination in the peripheral nervous system. To investigate the putative role of HERC1 in the presynaptic dynamics we have performed a series of experiments in cultured tambaleante hippocampal neurons by using transmission electron microscopy, FM1-43 destaining and immunocytochemistry. Our results show: (1) a decrease in the number of synaptic vesicles; (2) reduced active zones; (3) less clathrin immunoreactivity and less presynaptic endings over the hippocampal main dendritic trees; which contrast with (4) a greater number of endosomes and autophagosomes in the presynaptic endings of the tambaleante neurons relative to control ones. Altogether these results show an important role of HERC1 in the regulation of presynaptic membrane dynamics.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Ubiquitina-Proteína Ligases/genética , Animais , Autofagia , Células Cultivadas , Hipocampo/fisiologia , Camundongos , Camundongos Knockout , Mutação , Células Piramidais/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
8.
Cereb Cortex ; 29(8): 3266-3281, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30169759

RESUMO

Critical periods of synaptic plasticity facilitate the reordering and refining of neural connections during development, allowing the definitive synaptic circuits responsible for correct adult physiology to be established. Presynaptic spike timing-dependent long-term depression (t-LTD) exists in the hippocampus, which depends on the activation of NMDARs and that probably fulfills a role in synaptic refinement. This t-LTD is present until the third postnatal week in mice, disappearing in the fourth week of postnatal development. We were interested in the mechanisms underlying this maturation related loss of t-LTD and we found that at CA3-CA1 synapses, presynaptic NMDA receptors (pre-NMDARs) are tonically active between P13 and P21, mediating an increase in glutamate release during this critical period of plasticity. Conversely, at the end of this critical period (P22-P30) and coinciding with the loss of t-LTD, these pre-NMDARs are no longer tonically active. Using immunogold electron microscopy, we demonstrated the existence of pre-NMDARs at Schaffer collateral synaptic boutons, where a decrease in the number of pre-NMDARs during development coincides with the loss of both tonic pre-NMDAR activation and t-LTD. Interestingly, this t-LTD can be completely recovered by antagonizing adenosine type 1 receptors (A1R), which also recovers the tonic activation of pre-NMDARs at P22-P30. By contrast, the induction of t-LTD was prevented at P13-P21 by an agonist of A1R, as was tonic pre-NMDAR activation. Furthermore, we found that the adenosine that mediated the loss of t-LTD during the fourth week of development is supplied by astrocytes. These results provide direct evidence for the mechanism that closes the window of plasticity associated with t-LTD, revealing novel events probably involved in synaptic remodeling during development.


Assuntos
Potenciais de Ação/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Bicuculina/farmacologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Plasticidade Neuronal , Técnicas de Patch-Clamp , Antagonistas de Receptores Purinérgicos P1/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Teofilina/análogos & derivados , Teofilina/farmacologia
9.
Mol Neurobiol ; 56(5): 3638-3656, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30173408

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.


Assuntos
Ferro/metabolismo , Mutação/genética , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Ácido Pantotênico/uso terapêutico , Morte Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Coenzima A/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipofuscina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Ácido Pantotênico/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Carbonilação Proteica/efeitos dos fármacos
10.
Mol Neurobiol ; 55(2): 1157-1168, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28102468

RESUMO

Tambaleante (tbl/tbl) is a mutant mouse that carries a spontaneous Gly483Glu substitution in the HERC1 (HECT domain and RCC1 domain) E3 ubiquitin ligase protein (HERC1). The tbl/tbl mutant suffers an ataxic syndrome given the almost complete loss of cerebellar Purkinje cells during adult life. More recent analyses have identified alterations at neuromuscular junctions in these mice, as well as in other neurons of the central nervous system, such as motor neurons in the spinal cord, or pyramidal neurons in the hippocampal CA3 region and the neocortex. Accordingly, the effect of the tbl/tbl mutation apparently extends to other regions of the nervous system far from the cerebellum. As HERC1 mutations in humans have been correlated with intellectual impairment, we studied the effect of the tbl/tbl mutation on learning. Using a behavioral test, ex vivo electrophysiological recordings, immunohistochemistry, and Golgi method, we analyzed the associative learning in the lateral amygdala of the tbl/tbl mouse. The tbl/tbl mice perform worse than wild-type animals in the passive avoidance test, and histologically, the tbl/tbl mice have more immature forms of dendritic spines. In addition, LTP cannot be detected in these animals and their STP is dampened, as is their glutamatergic input to the lateral amygdala. Together, these data suggest that HERC1 is probably involved in regulating synaptic function in the amygdala. Indeed, these results indicate that the tbl/tbl mutation is a good model to analyze the effect of alterations to the ubiquitin-proteasome pathway on the synaptic mechanisms involved in learning and its defects.


Assuntos
Tonsila do Cerebelo/metabolismo , Aprendizagem da Esquiva/fisiologia , Espinhas Dendríticas/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Condicionamento Clássico/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Mutação , Neurônios/metabolismo , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Front Neuroanat ; 7: 4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630472

RESUMO

The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input-output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum.

12.
Brain Res Brain Res Rev ; 49(2): 267-79, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16111555

RESUMO

Naturally occurring neuronal death plays a substantial developmental role in the building of the neural circuitries. The neuronal death caused by different cerebellar mutations is mostly of an apoptotic nature. Apart from the identity of the intrinsic mechanisms of the mutations, adult cerebellar mutants are a powerful tool to causally study the development of the cerebellar connectivity. Thus, studies on adult cerebellar neuronal cell death occurring in mouse mutants elucidate: (i) the dependence of the postsynaptic neurons on their partners, (ii) the 'en cascade' postsynaptic transneuronal degeneration after target-deprivation, and (iii) the close relationship between the molecular modular organization of the cerebellar cortex and dying Purkinje cells. Neuronal cell death has been extensively studied in developing olivocerebellar system. However, less data are available on the occurrence of naturally occurring neuronal death during the in vivo normal development of the Purkinje cells and the mossy fiber system neurons. The developmental role of neuronal death during the establishment and refinement of the olivocerebellar projection is currently discussed. Moreover, the occurrence of neuronal death during the development of the basilar pontine nuclei and its role in the acquisition of the adult pontocerebellar projection is still poorly understood. In the present review, we correlate the dates of Purkinje cells death with the inferior olivary and basilar pontine neuronal apoptosis, discussing their developmental relationships during the elaboration of the fine-grained maps of the cerebellar afferent connections.


Assuntos
Vias Aferentes/crescimento & desenvolvimento , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Células de Purkinje/fisiologia , Animais , Contagem de Células , Morte Celular/fisiologia
13.
Brain Res Brain Res Rev ; 49(2): 343-54, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16111561

RESUMO

Sympathoadrenal (SA) cell lineage encompasses neural crest derivatives such as sympathetic neurons, small intensely fluorescent (SIF) cells of sympathetic ganglia and adrenal medulla, and chromaffin cells of adrenal medulla and extra-adrenal paraganglia. SA autografts have been used for transplantation in Parkinson's disease (PD) for three reasons: (i) as autologous donor tissue avoids graft rejection and the need for immunosuppressant therapy, (ii) SA cells express dopaminotrophic factors such as GNDF and TGFbetas, and (iii) although most of SA cells release noradrenaline, some of them are able to produce and release dopamine. Adrenal chromaffin cells were the first SA transplanted cells in both animal models of PD and PD patients. However, these autografts have met limited success because long-term cell survival is very poor, and this approach is no longer pursued clinically. Sympathetic neurons from the superior cervical ganglion have been also grafted in PD animal models and PD patients. Poor survival into brain parenchyma of grafted tissue is a serious disadvantage for its clinical application. However, cultured sympathetic cell grafts present a better survival rate, and they reduce the need for levodopa medication in PD patients by facilitating the conversion of exogenous levodopa. SA extra-adrenal chromaffin cells are located on paraganglia (i.e., the Zuckerkandl's organ), and have been used for grafting in a rodent model of PD. Preliminary results indicate that long-term survival of these cells is better than for other SA cells, exerting a more prolonged restorative neurotrophic action on denervated host striatum. The ability of SA extra-adrenal cells to respond to hypoxia, differently to SA sympathetic neurons or adrenal medulla cells, could explain their good survival rate after brain transplantation.


Assuntos
Medula Suprarrenal/citologia , Transplante de Tecido Encefálico/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cromafins/fisiologia , Neurônios/fisiologia , Doença de Parkinson/cirurgia , Animais , Células Cromafins/transplante , Gânglios Simpáticos/citologia , Humanos , Neurônios/transplante , Reimplante/métodos
14.
Med Oral ; 9(3): 243-52, 2004.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-15122127

RESUMO

The main goal of this study was the analysis of the developmental potentiality of tooth germ from late bell stage on, after its heterotopic placement within the skin. Teeth germs of newborn rats were grafted within a skin pouch of the ear of adult rats. Seven to fourteen days after grafting, dental germs developed normal dental structures in which ameloblasts and odontoblasts were well differentiated. Twenty to forty-one days after graft, the inflammatory host reaction destroyed the dental developed tissues by cell infiltration. The dentin of the grafts was of osteoid characteristics, and its size increased depending on grafting time until the complete substitution of all dental tissues. This atypical dentin showed several degrees of polymerisation from collagen fibres smooth dentin devoid near the graft a to fibres rich dentin far from the dental germ. Present results suggest that this type of dental graft could be a valuable model to study the self-development of dental tissues and the reactive mechanisms taking place after dental injuries.


Assuntos
Germe de Dente/crescimento & desenvolvimento , Germe de Dente/transplante , Animais , Procedimentos Cirúrgicos Dermatológicos , Orelha/cirurgia , Ratos , Ratos Wistar , Transplante Heterotópico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA