Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
bioRxiv ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38659937

RESUMO

Human induced pluripotent stem cells (hiPSCs) are frequently used to study disease-associated variations. We characterized transcriptional variability from a hiPSC-derived cardiomyocyte (hiPSC-CM) study of left ventricular hypertrophy (LVH) using donor samples from the HyperGEN study. Multiple hiPSC-CM differentiations over reprogramming events (iPSC generation) across 7 donors were used to assess variabilities from reprogramming, differentiation, and donor LVH status. Variability arising from pathological alterations was assessed using a cardiac stimulant applied to the hiPSC-CMs to trigger hypertrophic responses. We found that for most genes (73.3%~85.5%), technical variability was smaller than biological variability. Further, we identified and characterized lists of "noise" genes showing greater technical variability and "signal" genes showing greater biological variability. Together, they support a "genetic robustness" hypothesis of disease-modeling whereby cellular response to relevant stimuli in hiPSC-derived somatic cells from diseased donors tends to show more transcriptional variability. Our findings suggest that hiPSC-CMs can provide a valid model for cardiac hypertrophy and distinguish between technical and disease-relevant transcriptional changes.

2.
Circulation ; 149(14): e1028-e1050, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415358

RESUMO

A major focus of academia, industry, and global governmental agencies is to develop and apply artificial intelligence and other advanced analytical tools to transform health care delivery. The American Heart Association supports the creation of tools and services that would further the science and practice of precision medicine by enabling more precise approaches to cardiovascular and stroke research, prevention, and care of individuals and populations. Nevertheless, several challenges exist, and few artificial intelligence tools have been shown to improve cardiovascular and stroke care sufficiently to be widely adopted. This scientific statement outlines the current state of the art on the use of artificial intelligence algorithms and data science in the diagnosis, classification, and treatment of cardiovascular disease. It also sets out to advance this mission, focusing on how digital tools and, in particular, artificial intelligence may provide clinical and mechanistic insights, address bias in clinical studies, and facilitate education and implementation science to improve cardiovascular and stroke outcomes. Last, a key objective of this scientific statement is to further the field by identifying best practices, gaps, and challenges for interested stakeholders.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Acidente Vascular Cerebral , Estados Unidos , Humanos , Inteligência Artificial , American Heart Association , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/prevenção & controle , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/prevenção & controle
3.
Circulation ; 149(12): e964-e985, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38344851

RESUMO

In 1924, the founders of the American Heart Association (AHA) envisioned an international society focused on the heart and aimed at facilitating research, disseminating information, increasing public awareness, and developing public health policy related to heart disease. This presidential advisory provides a comprehensive review of the past century of cardiovascular and stroke science, with a focus on the AHA's contributions, as well as informed speculation about the future of cardiovascular science into the next century of the organization's history. The AHA is a leader in fundamental, translational, clinical, and population science, and it promotes the concept of the "learning health system," in which a continuous cycle of evidence-based practice leads to practice-based evidence, permitting an iterative refinement in clinical evidence and care. This advisory presents the AHA's journey over the past century from instituting professional membership to establishing extraordinary research funding programs; translating evidence to practice through clinical practice guidelines; affecting systems of care through quality programs, certification, and implementation; leading important advocacy efforts at the federal, state and local levels; and building global coalitions around cardiovascular and stroke science and public health. Recognizing an exciting potential future for science and medicine, the advisory offers a vision for even greater impact for the AHA's second century in its continued mission to be a relentless force for longer, healthier lives.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Acidente Vascular Cerebral , Estados Unidos , Humanos , American Heart Association , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/epidemiologia , Prática Clínica Baseada em Evidências , Mediastino , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/epidemiologia
4.
Int J Epidemiol ; 53(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199785

RESUMO

BACKGROUND: Frequent fruit and vegetable consumption is considered a promising dietary behaviour that protects health. However, most existing studies about the factors associated with this phenomenon among Africans are based on single-country reports, apart from one meta-regression combining smaller studies. This study harmonized large datasets and assessed factors associated with the frequency of fruit and vegetable consumption in this population. METHODS: Individual-level data on sociodemographics, lifestyle and diet from 20 443 participants across five African countries (Burkina Faso, Ghana, Kenya, South Africa and Nigeria), from the Stroke Investigative Research and Educational Network (SIREN) and Africa Wits-INDEPTH partnership for Genomic Research (AWI-Gen) studies, were harmonized. Total frequency of fruit and vegetable consumption (in portions/week) was classified as 'low' (≤6), 'moderate' (7-14) and 'high' (≥15). Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) of factors associated with the total frequency of fruit and vegetable consumption (using 'low' consumption as the reference) were estimated using multinomial regression models. RESULTS: Mean age of participants was 54.3 ± 11.8 years, 10 641 (52.1%) were female, and the median (interquartile range) frequency of total fruit and vegetable consumption was 10.0 (4.0, 21.0) portions/week. Participants with a family history of cardiovascular disease [moderate (aOR, 0.92; 95% CI, 0.85, 1.00) and high (aOR, 0.85; 95% CI, 0.78, 0.92)], current smokers [moderate (aOR, 0.83; 95% CI, 0.74, 0.94) and high (aOR, 0.78; 95% CI, 0.69, 0.88)], current alcohol users [moderate (aOR, 0.92; 95% CI, 0.85, 1.00) and high (aOR, 0.82; 95% CI, 0.76, 0.89)] and physically inactive participants [moderate (aOR, 0.85; 95% CI, 0.75, 0.96) and high (aOR, 0.80; 95% CI, 0.70, 0.90)] were less likely to consume fruits and vegetables frequently. CONCLUSION: Africans with lifestyle risk factors for cardiovascular disease were less likely to consume fruit and vegetables frequently.


Assuntos
Frutas , Verduras , Humanos , Feminino , Lactente , Masculino , Dieta , Fatores de Risco , Quênia
5.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961350

RESUMO

Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for functionally-informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new associations with lipid traits missed by single-trait analysis, including rare variants within an enhancer of NIPSNAP3A and an intergenic region on chromosome 1.

6.
Front Genet ; 14: 1184661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779905

RESUMO

Introduction: Metabolic syndrome (MetS) increases the risk of cardiovascular disease and death. Previous '-omics' studies have identified dysregulated serum metabolites and aberrant DNA methylation in the setting of MetS. However, the relationship between the metabolome and epigenome have not been elucidated. In this study, we identified serum metabolites associated with MetS and DNA methylation, and we conducted bidirectional Mendelian randomization (MR) to assess causal relationships between metabolites and methylation. Methods: We leveraged metabolomic and genomic data from a national United States cohort of older adults (REGARDS), as well as metabolomic, epigenomic, and genomic data from a family-based study of hypertension (HyperGEN). We conducted metabolite profiling for MetS in REGARDS using weighted logistic regression models and validated them in HyperGEN. Validated metabolites were selected for methylation studies which fit linear mixed models between metabolites and six CpG sites previously linked to MetS. Statistically significant metabolite-CpG pairs were selected for two-sample, bidirectional MR. Results: Forward MR indicated that glucose and serine metabolites were causal on CpG methylation near CPT1A [B(SE): -0.003 (0.002), p = 0.028 and B(SE): 0.029 (0.011), p = 0.030, respectively] and that serine metabolites were causal on ABCG1 [B(SE): -0.008(0.003), p = 0.006] and SREBF1 [B(SE): -0.009(0.004), p = 0.018] methylation, which suggested a protective effect of serine. Reverse MR showed a bidirectional relationship between cg06500161 (ABCG1) and serine [B(SE): -1.534 (0.668), p = 0.023]. Discussion: The metabolome may contribute to the relationship between MetS and epigenetic modifications.

7.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802043

RESUMO

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Estudo de Associação Genômica Ampla , Medicina de Precisão , Sequenciamento Completo do Genoma/métodos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
8.
Nutr Metab Cardiovasc Dis ; 33(12): 2413-2418, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580232

RESUMO

BACKGROUND AND AIMS: While the association of potato consumption with risk factors for coronary artery disease has been inconsistent, no data are available in the literature on the influence of potato consumption on subclinical disease. Thus, we sought to examine whether baked/mashed potato consumption is associated with calcified atherosclerotic plaques in the coronary arteries. METHODS AND RESULTS: In a cross-sectional design, we studied 2208 participants of the NHLBI Family Heart Study. These subjects were selected based on their elevated cardiovascular disease risk compared to the general population. Potato consumption was assessed by a semi-quantitative food frequency questionnaire. We defined prevalent CAC using an Agatston score of at least 100 and fitted generalized estimating equations to calculate prevalence odds ratios of CAC. Mean age at initial clinic visit was 58.2 years and 55% were female. Median consumption of potatoes was 2-4/week. There was no statistically significant association between frequency of potato consumption and prevalent CAC: odds ratios (95% CI) for CAC were 1.0 (reference), 0.85 (0.56-1.30), 0.85 (0.58-1.26), and 0.95 (0.60-1.53) among subjects reporting potato consumption of <1/week, 1/week, 2-4/week, and 5+/week, respectively (p for linear trend 0.83), adjusting for age, sex, BMI, smoking, exercise, diabetes, hypertension, total calories, prevalent coronary heart disease, income, education, and daily red meat intake. CONCLUSIONS: We found no significant association between baked/mashed potato consumption and CAC in older adults. STUDY REGISTRATION NUMBER: NCT00005136. Study registration date: 5/25/2000.


Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Solanum tuberosum , Estados Unidos/epidemiologia , Humanos , Feminino , Idoso , Masculino , Vasos Coronários , National Heart, Lung, and Blood Institute (U.S.) , Estudos Transversais , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Fatores de Risco
9.
medRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425772

RESUMO

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.

10.
Nat Commun ; 14(1): 3202, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268629

RESUMO

We assess performance and limitations of polygenic risk scores (PRSs) for multiple blood pressure (BP) phenotypes in diverse population groups. We compare "clumping-and-thresholding" (PRSice2) and LD-based (LDPred2) methods to construct PRSs from each of multiple GWAS, as well as multi-PRS approaches that sum PRSs with and without weights, including PRS-CSx. We use datasets from the MGB Biobank, TOPMed study, UK biobank, and from All of Us to train, assess, and validate PRSs in groups defined by self-reported race/ethnic background (Asian, Black, Hispanic/Latino, and White). For both SBP and DBP, the PRS-CSx based PRS, constructed as a weighted sum of PRSs developed from multiple independent GWAS, perform best across all race/ethnic backgrounds. Stratified analysis in All of Us shows that PRSs are better predictive of BP in females compared to males, individuals without obesity, and middle-aged (40-60 years) compared to older and younger individuals.


Assuntos
Saúde da População , Masculino , Feminino , Humanos , Pressão Sanguínea/genética , Fatores de Risco , Herança Multifatorial/genética , Etnicidade/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença
11.
Sci Adv ; 9(17): eabm4945, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126548

RESUMO

Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences.


Assuntos
Mutação em Linhagem Germinativa , Hematopoese , Humanos , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Fenótipo
12.
Front Genet ; 14: 1117778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873949

RESUMO

Background: Many epigenetic loci have been associated with plasma triglyceride (TG) levels, but epigenetic connections between those loci and dietary exposures are largely unknown. This study aimed to characterize the epigenetic links between diet, lifestyle, and TG. Methods: We first conducted an epigenome-wide association study (EWAS) for TG in the Framingham Heart Study Offspring population (FHS, n = 2,264). We then examined relationships between dietary and lifestyle-related variables, collected four times in 13 years, and differential DNA methylation sites (DMSs) associated with the last TG measures. Third, we conducted a mediation analysis to evaluate the causal relationships between diet-related variables and TG. Finally, we replicated three steps to validate identified DMSs associated with alcohol and carbohydrate intake in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 993). Results: In the FHS, the EWAS revealed 28 TG-associated DMSs at 19 gene regions. We identified 102 unique associations between these DMSs and one or more dietary and lifestyle-related variables. Alcohol and carbohydrate intake showed the most significant and consistent associations with 11 TG-associated DMSs. Mediation analyses demonstrated that alcohol and carbohydrate intake independently affect TG via DMSs as mediators. Higher alcohol intake was associated with lower methylation at seven DMSs and higher TG. In contrast, increased carbohydrate intake was associated with higher DNA methylation at two DMSs (CPT1A and SLC7A11) and lower TG. Validation in the GOLDN further supports the findings. Conclusion: Our findings imply that TG-associated DMSs reflect dietary intakes, particularly alcoholic drinks, which could affect the current cardiometabolic risk via epigenetic changes. This study illustrates a new method to map epigenetic signatures of environmental factors for disease risk. Identification of epigenetic markers of dietary intake can provide insight into an individual's risk of cardiovascular disease and support the application of precision nutrition. Clinical Trial Registration: www.ClinicalTrials.gov, the Framingham Heart Study (FHS), NCT00005121; the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN), NCT01023750.

13.
Res Sq ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778386

RESUMO

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hematologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

14.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747810

RESUMO

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hemotologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

15.
Nat Genet ; 55(2): 291-300, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702996

RESUMO

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.


Assuntos
Reposicionamento de Medicamentos , Transcriptoma , Humanos , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Uso de Tabaco , Biologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
16.
Hum Mol Genet ; 32(6): 1048-1060, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444934

RESUMO

Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Aminopeptidases , Nefropatias Diabéticas/genética , Sequenciamento do Exoma , Rim , Insuficiência Renal Crônica/genética
17.
Nat Genet ; 55(1): 154-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564505

RESUMO

Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.


Assuntos
Estudo de Associação Genômica Ampla , Lipídeos , Estudo de Associação Genômica Ampla/métodos , Sequenciamento Completo do Genoma/métodos , Sequenciamento do Exoma , Fenótipo , Lipídeos/genética
18.
Front Genet ; 14: 1278215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162683

RESUMO

Introduction: Apparent treatment-resistant hypertension (aTRH) is characterized by the use of four or more antihypertensive (AHT) classes to achieve blood pressure (BP) control. In the current study, we conducted single-variant and gene-based analyses of aTRH among individuals from 12 Trans-Omics for Precision Medicine cohorts with whole-genome sequencing data. Methods: Cases were defined as individuals treated for hypertension (HTN) taking three different AHT classes, with average systolic BP ≥ 140 or diastolic BP ≥ 90 mmHg, or four or more medications regardless of BP (n = 1,705). A normotensive control group was defined as individuals with BP < 140/90 mmHg (n = 22,079), not on AHT medication. A second control group comprised individuals who were treatment responsive on one AHT medication with BP < 140/ 90 mmHg (n = 5,424). Logistic regression with kinship adjustment using the Scalable and Accurate Implementation of Generalized mixed models (SAIGE) was performed, adjusting for age, sex, and genetic ancestry. We assessed variants using SKAT-O in rare-variant analyses. Single-variant and gene-based tests were conducted in a pooled multi-ethnicity stratum, as well as self-reported ethnic/racial strata (European and African American). Results: One variant in the known HTN locus, KCNK3, was a top finding in the multi-ethnic analysis (p = 8.23E-07) for the normotensive control group [rs12476527, odds ratio (95% confidence interval) = 0.80 (0.74-0.88)]. This variant was replicated in the Vanderbilt University Medical Center's DNA repository data. Aggregate gene-based signals included the genes AGTPBP, MYL4, PDCD4, BBS9, ERG, and IER3. Discussion: Additional work validating these loci in larger, more diverse populations, is warranted to determine whether these regions influence the pathobiology of aTRH.

19.
Nature ; 612(7941): 720-724, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477530

RESUMO

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.


Assuntos
Consumo de Bebidas Alcoólicas , Predisposição Genética para Doença , Variação Genética , Internacionalidade , Herança Multifatorial , Uso de Tabaco , Humanos , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Fatores de Risco , Uso de Tabaco/genética , Consumo de Bebidas Alcoólicas/genética , Transcriptoma , Tamanho da Amostra , Loci Gênicos/genética , Europa (Continente)/etnologia
20.
Nat Commun ; 13(1): 5995, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220816

RESUMO

Blood lipids are heritable modifiable causal factors for coronary artery disease. Despite well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing (WGS), partly due to limited sample sizes, ancestral diversity, and interpretation of clinical significance. Among 66,329 ancestrally diverse (56% non-European) participants, we associate 428M variants from deep-coverage WGS with lipid levels; ~400M variants were not assessed in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with blood lipids through analysis of common and rare coding variants. We discover several associated rare non-coding variants, largely at Mendelian lipid genes. Notably, we observe rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for blood lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids.


Assuntos
Estudo de Associação Genômica Ampla , Lipídeos , Alelos , LDL-Colesterol , Humanos , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA