Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38701438

RESUMO

Several studies have indicated a strong link between obesity and the risk of breast cancer. Obesity decreases gut microbial biodiversity and modulates Bacteroidetes-to-Firmicutes proportional abundance, suggesting that increased energy-harvesting capacity from indigestible dietary fibers and elevated lipopolysaccharide bioavailability may promote inflammation. To address the limited evidence linking diet-mediated changes in the gut microbiota to breast cancer risk, we aimed to determine how diet affects the microbiome and breast cancer risk. Female 3-week-old BALB/c mice were fed six different diets (control, high-sugar, lard, coconut oil, lard+flaxseed oil, and lard+safflower oil) for 10 weeks. Fecal 16s sequencing was performed for each group. Diet shifted fecal microbiome populations and modulated mammary gland macrophage infiltration. Fecal conditioned media shifted macrophage polarity and inflammation. In our DMBA-induced breast cancer model, diet differentially modulated tumor and mammary gland metabolism. We demonstrated how dietary patterns change metabolic outcomes, and gut microbiota, which may contribute to breast tumor risk. Furthermore, we showed the influence of diet on metabolism, inflammation, and macrophage polarity. This study suggests that dietary-microbiome interactions are key mediators of breast cancer risk.

2.
Front Psychiatry ; 14: 1296527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268565

RESUMO

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. In the mature brain, inhibitory GABAergic signaling is critical in maintaining neuronal homeostasis and vital human behaviors such as cognition, emotion, and motivation. While classically known to inhibit neuronal function under physiological conditions, previous research indicates a paradoxical switch from inhibitory to excitatory GABAergic signaling that is implicated in several neurological disorders. Various mechanisms have been proposed to contribute to the excitatory switch such as chloride ion dyshomeostasis, alterations in inhibitory receptor expression, and modifications in GABAergic synaptic plasticity. Of note, the hypothesized mechanisms underlying excitatory GABAergic signaling are highlighted in a number of neurodevelopmental, substance use, stress, and neurodegenerative disorders. Herein, we present an updated review discussing the presence of excitatory GABAergic signaling in various neurological disorders, and their potential contributions towards disease pathology.

3.
Endocrinology ; 164(1)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36282876

RESUMO

Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme ß-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.


Assuntos
Neoplasias da Mama , Microbiota , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Glucuronídeos , Recidiva Local de Neoplasia , Disbiose/complicações , Microbiota/fisiologia , Estrogênios/metabolismo , Carcinogênese , Glucuronidase/metabolismo , Transformação Celular Neoplásica , Inibidores Enzimáticos
4.
Breast Cancer Res Treat ; 190(1): 53-67, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34448090

RESUMO

PURPOSE: Menopause is associated with an increased risk of estrogen receptor-positive (ER +) breast cancer. To characterize the metabolic shifts associated with reduced estrogen bioavailability on breast tissue, metabolomics was performed from ovary-intact and ovariectomized (OVX) female non-human primates (NHP). The effects of exogenous estrogen administration or estrogen receptor blockade (tamoxifen treatment) on menopause-induced metabolic changes were also investigated. METHODS: Bilateral ovariectomies were performed on female cynomolgus macaques (Macaca fascicularis) to model menopause. OVX NHP were then divided into untreated (n = 13), conjugated equine estrogen (CEE)-treated (n= 13), or tamoxifen-treated (n = 13) subgroups and followed for 3 years. Aged-matched ovary-intact female NHP (n = 12) were used as a premenopausal comparison group. Metabolomics was performed on snap-frozen breast tissue. RESULTS: Changes in several different metabolic biochemicals were noted, particularly in glucose and fatty acid metabolism. Specifically, glycolytic, Krebs cycle, acylcarnitines, and phospholipid metabolites were elevated in breast tissue from ovary-intact NHP and OVX + CEE in relation to the OVX and OVX + tamoxifen group. In contrast, treatment with CEE and tamoxifen decreased several cholesterol metabolites, compared to the ovary-intact and OVX NHP. These changes were accompanied by elevated bile acid metabolites in the ovary-intact group. CONCLUSION: Alterations in estrogen bioavailability are associated with changes in the mammary tissue metabolome, particularly in glucose and fatty acid metabolism. Changes in these pathways may represent a bioenergetic shift in gland metabolism at menopause that may affect breast cancer risk.


Assuntos
Neoplasias da Mama , Estrogênios , Terapia de Reposição Hormonal , Receptores de Estrogênio/antagonistas & inibidores , Idoso , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Terapia de Reposição de Estrogênios , Estrogênios Conjugados (USP) , Feminino , Humanos , Macaca fascicularis , Ovariectomia , Receptores de Estrogênio/genética
5.
Cancer Res ; 81(14): 3890-3904, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34083249

RESUMO

Obesity and poor diet often go hand-in-hand, altering metabolic signaling and thereby impacting breast cancer risk and outcomes. We have recently demonstrated that dietary patterns modulate mammary microbiota populations. An important and largely open question is whether the microbiome of the gut and mammary gland mediates the dietary effects on breast cancer. To address this, we performed fecal transplants between mice on control or high-fat diets (HFD) and recorded mammary tumor outcomes in a chemical carcinogenesis model. HFD induced protumorigenic effects, which could be mimicked in animals fed a control diet by transplanting HFD-derived microbiota. Fecal transplants altered both the gut and mammary tumor microbiota populations, suggesting a link between the gut and breast microbiomes. HFD increased serum levels of bacterial lipopolysaccharide (LPS), and control diet-derived fecal transplant reduced LPS bioavailability in HFD-fed animals. In vitro models of the normal breast epithelium showed that LPS disrupts tight junctions (TJ) and compromises epithelial permeability. In mice, HFD or fecal transplant from animals on HFD reduced expression of TJ-associated genes in the gut and mammary gland. Furthermore, infecting breast cancer cells with an HFD-derived microbiome increased proliferation, implicating tumor-associated bacteria in cancer signaling. In a double-blind placebo-controlled clinical trial of patients with breast cancer administered fish oil supplements before primary tumor resection, dietary intervention modulated the microbiota in tumors and normal breast tissue. This study demonstrates a link between the gut and breast that mediates the effect of diet on cancer. SIGNIFICANCE: This study demonstrates that diet shifts the microbiome in the gut and the breast tumor microenvironment to affect tumorigenesis, and oral dietary interventions can modulate the tumor microbiota in patients with breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3890/F1.large.jpg.


Assuntos
Mama/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Animais , Carcinogênese , Feminino , Humanos , Camundongos , Microbiota , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA