Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Cell Biol ; 24(9): 1378-1393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36075972

RESUMO

While acetylated, RNA-binding-deficient TDP-43 reversibly phase separates within nuclei into complex droplets (anisosomes) comprised of TDP-43-containing liquid outer shells and liquid centres of HSP70-family chaperones, cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we show that transient oxidative stress, proteasome inhibition or inhibition of the ATP-dependent chaperone activity of HSP70 provokes reversible cytoplasmic TDP-43 de-mixing and transition from liquid to gel/solid, independently of RNA binding or stress granules. Isotope labelling mass spectrometry was used to identify that phase-separated cytoplasmic TDP-43 is bound by the small heat-shock protein HSPB1. Binding is direct, mediated through TDP-43's RNA binding and low-complexity domains. HSPB1 partitions into TDP-43 droplets, inhibits TDP-43 assembly into fibrils, and is essential for disassembly of stress-induced TDP-43 droplets. A decrease in HSPB1 promotes cytoplasmic TDP-43 de-mixing and mislocalization. HSPB1 depletion was identified in spinal motor neurons of patients with ALS containing aggregated TDP-43. These findings identify HSPB1 to be a regulator of cytoplasmic TDP-43 phase separation and aggregation.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico , Transição de Fase , Trifosfato de Adenosina , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Complexo de Endopeptidases do Proteassoma , RNA/metabolismo
2.
Acta Neuropathol ; 142(6): 985-1001, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34618203

RESUMO

Amyotrophic lateral sclerosis is a progressive fatal neurodegenerative disease caused by loss of motor neurons and characterized neuropathologically in almost all cases by nuclear depletion and cytoplasmic aggregation of TDP-43, a nuclear RNA-binding protein (RBP). We identified ELAVL3 as one of the most downregulated genes in our transcriptome profiles of laser captured microdissection of motor neurons from sporadic ALS nervous systems and the most dysregulated of all RBPs. Neuropathological characterizations showed ELAVL3 nuclear depletion in a great percentage of remnant motor neurons, sometimes accompanied by cytoplasmic accumulations. These abnormalities were common in sporadic cases with and without intermediate expansions in ATXN2 and familial cases carrying mutations in C9orf72 and SOD1. Depletion of ELAVL3 occurred at both the RNA and protein levels and a short protein isoform was identified, but it is not related to a TDP-43-dependent cryptic exon in intron 3. Strikingly, ELAVL3 abnormalities were more frequent than TDP-43 abnormalities and occurred in motor neurons still with normal nuclear TDP-43 present, but all neurons with abnormal TDP-43 also had abnormal ELAVL3. In a neuron-like cell culture model using SH-SY5Y cells, ELAVL3 mislocalization occurred weeks before TDP-43 abnormalities were seen. We interrogated genetic databases, but did not identify association of ELAVL3 genetic structure with ALS. Taken together, these findings suggest that ELAVL3 is an important RBP in ALS pathogenesis acquired early and the neuropathological data suggest that it is involved by loss of function rather than cytoplasmic toxicity.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína Semelhante a ELAV 3/metabolismo , Neurônios Motores/metabolismo , Núcleo Celular/metabolismo , Humanos
3.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34347016

RESUMO

Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43-mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies-related diseases.


Assuntos
Colesterol/metabolismo , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Animais , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/patologia , Oligodendroglia/patologia , Organoides/metabolismo , Organoides/patologia , Cultura Primária de Células , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Lobo Temporal/metabolismo , Lobo Temporal/patologia
4.
Cell Syst ; 12(2): 159-175.e9, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33382996

RESUMO

Induced pluripotent stem cell (iPSC)-derived neural cultures from amyotrophic lateral sclerosis (ALS) patients can model disease phenotypes. However, heterogeneity arising from genetic and experimental variability limits their utility, impacting reproducibility and the ability to track cellular origins of pathogenesis. Here, we present methodologies using single-cell RNA sequencing (scRNA-seq) analysis to address these limitations. By repeatedly differentiating and applying scRNA-seq to motor neurons (MNs) from healthy, familial ALS, sporadic ALS, and genome-edited iPSC lines across multiple patients, batches, and platforms, we account for genetic and experimental variability toward identifying unified and reproducible ALS signatures. Combining HOX and developmental gene expression with global clustering, we anatomically classified cells into rostrocaudal, progenitor, and postmitotic identities. By relaxing statistical thresholds, we discovered genes in iPSC-MNs that were concordantly dysregulated in postmortem MNs and yielded predictive ALS markers in other human and mouse models. Our approach thus revealed early, convergent, and MN-resolved signatures of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA