Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 39(13): 111006, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767951

RESUMO

T cells depend on the phosphatase CD45 to initiate T cell receptor signaling. Although the critical role of CD45 in T cells is established, the mechanisms controlling function and localization in the membrane are not well understood. Moreover, the regulation of specific CD45 isoforms in T cell signaling remains unresolved. By using unbiased mass spectrometry, we identify the tetraspanin CD53 as a partner of CD45 and show that CD53 controls CD45 function and T cell activation. CD53-negative T cells (Cd53-/-) exhibit substantial proliferation defects, and Cd53-/- mice show impaired tumor rejection and reduced IFNγ-producing T cells compared with wild-type mice. Investigation into the mechanism reveals that CD53 is required for CD45RO expression and mobility. In addition, CD53 is shown to stabilize CD45 on the membrane and is required for optimal phosphatase activity and subsequent Lck activation. Together, our findings reveal CD53 as a regulator of CD45 activity required for T cell immunity.


Assuntos
Linfócitos T , Tetraspanina 25 , Animais , Movimento Celular/imunologia , Antígenos Comuns de Leucócito/imunologia , Ativação Linfocitária , Camundongos , Isoformas de Proteínas , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Tetraspanina 25/imunologia
2.
iScience ; 24(9): 102976, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34485858

RESUMO

Melanoma is an aggressive skin cancer developing from melanocytes, frequently resulting in metastatic disease. Melanoma cells utilize amoeboid migration as mode of local invasion. Amoeboid invasion is characterized by rounded cell morphology and high actomyosin contractility driven by Rho GTPase signalling. Migrastatic drugs targeting actin polymerization and contractility are therefore a promising treatment option for metastatic melanoma. To predict amoeboid invasion and metastatic potential, biomarkers functionally linked to contractility pathways are needed. The glycoprotein podoplanin drives actomyosin contractility in lymphoid fibroblasts and is overexpressed in many cancers. We show that podoplanin enhances amoeboid invasion in melanoma. Podoplanin expression in murine melanoma drives rounded cell morphology, increasing motility, and invasion in vivo. Podoplanin expression is increased in a subset of dedifferentiated human melanoma, and in vitro is sufficient to upregulate melanoma-associated marker Pou3f2/Brn2. Together, our data define podoplanin as a functional biomarker for dedifferentiated invasive melanoma and a promising migrastatic therapeutic target.

3.
Trends Cell Biol ; 31(2): 119-129, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248874

RESUMO

Membrane protein organization is essential for proper cellular functioning and the result of a dynamic exchange between protein monomers, nanoscale protein clusters, and microscale higher-order structures. This exchange is affected by both lipid bilayer intrinsic factors, such as lipid rafts and tetraspanins, and extrinsic factors, such as cortical actin and galectins. Because membrane organizers act jointly like instruments in a symphony, it is challenging to define the 'key' organizers. Here, we posit, for the first time, definitions of key intrinsic and extrinsic membrane organizers. Tetraspanin nanodomains are key organizers that are often overlooked. We discuss how different key organizers can collaborate, which is important to get a full grasp of plasma membrane biology.


Assuntos
Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Tetraspaninas/metabolismo , Humanos
4.
Crit Rev Oncog ; 25(3): 251-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33463945

RESUMO

CD20-targeting antibodies are the current standard of care for patients with mature B-cell malignancies. However, many patients relapse or develop therapy resistance, which emphasizes the urgent need for new therapies. Here, we provide an overview of the biology of the CD20 protein and the mechanisms of action of CD20 antibodies currently used in the clinic. In addition, we discuss different mechanisms underlying therapy resistance, and recent advances made in the development of novel antibody-based therapeutics to improve clinical outcome of patients with mature B-cell malignancies.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD20 , Antineoplásicos Imunológicos/uso terapêutico , Linfoma de Células B/tratamento farmacológico , Antígenos CD20/imunologia , Linfócitos B , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA