Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropharmacology ; 133: 307-318, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412144

RESUMO

Exposure to early-life adversity may program brain function to prepare individuals for adaptation to matching environmental contexts. In this study we tested this hypothesis in more detail by examining the effects of early-life stress - induced by raising offspring with limited nesting and bedding material from postnatal days 2-9 - in various behavioral tasks and on synaptic function in adult mice. Early-life stress impaired adult performance in the hippocampal dependent low-arousing object-in-context recognition memory task. This effect was absent when animals were exposed to a single stressor before training. Early-life stress did not alter high-arousing context and auditory fear conditioning. Early-life stress-induced behavioral modifications were not associated with alterations in the dendritic architecture of hippocampal CA1 pyramidal neurons or principal neurons of the basolateral amygdala. However, early-life stress reduced the ratio of NMDA to AMPA receptor-mediated excitatory postsynaptic currents and glutamate release probability specifically in hippocampal CA1 neurons, but not in the basolateral amygdala. These ex vivo effects in the hippocampus were abolished by acute glucocorticoid treatment. Our findings support that early-life stress can hamper object-in-context learning via pre- and postsynaptic mechanisms that affect hippocampal function but these effects are counteracted by acute stress or elevated glucocorticoid levels.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Glucocorticoides/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Psicológico/patologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Corticosterona/sangue , Modelos Animais de Doenças , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Medo , Feminino , Ácido Glutâmico/farmacologia , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Técnicas In Vitro , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Reconhecimento Psicológico/efeitos dos fármacos , Coloração pela Prata , Estresse Psicológico/complicações
2.
eNeuro ; 4(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098176

RESUMO

Early life adversity is a well-known risk factor for behavioral dysfunction later in life, including the formation of contextual memory; it is also (transiently) accompanied by hyperactivity of the stress system. We tested whether mifepristone (MIF) treatment, which among other things blocks glucocorticoid receptors (GRs), during the prepubertal period [postnatal days (PND)26-PND28] normalizes memory deficits in adult male rats exposed to 24-h maternal deprivation (MD) at PND3. MD reduced body weight gain and increased basal corticosterone (CORT) levels during the PND26, but not in adulthood. In adulthood, contextual memory formation of MD compared to noMD (i.e., control) male rats was significantly impaired. This impairment was fully prevented by MIF treatment at PND26-PND28, whereas MIF by itself did not affect behavior. A second behavioral test, a rodent version of the Iowa Gambling Task (rIGT), revealed that flexible spatial learning rather than reward-based aspects of performance was impaired by MD; the deficit was prevented by MIF. Neuronal activity as tested by c-Fos staining in the latter task revealed changes in the right hippocampal-dorsomedial striatal pathway, but not in prefrontal areas involved in reward learning. Follow-up electrophysiological recordings measuring spontaneous glutamate transmission showed reduced frequency of miniature postsynaptic excitatory currents in adult CA1 dorsal hippocampal and enhanced frequency in dorsomedial striatal neurons from MD versus noMD rats, which was not seen in MIF-treated rats. We conclude that transient prepubertal MIF treatment normalizes hippocampus-striatal-dependent contextual memory/spatial learning deficits in male rats exposed to early life adversity, possibly by normalizing glutamatergic transmission.


Assuntos
Encéfalo/efeitos dos fármacos , Privação Materna , Transtornos da Memória/tratamento farmacológico , Mifepristona/administração & dosagem , Neurônios/efeitos dos fármacos , Nootrópicos/administração & dosagem , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Corticosterona/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Neurônios/fisiologia , Distribuição Aleatória , Ratos Wistar , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/fisiopatologia , Técnicas de Cultura de Tecidos , Aumento de Peso/efeitos dos fármacos
3.
Front Behav Neurosci ; 9: 182, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236208

RESUMO

Mineralocorticoid receptors (MRs) have been implicated in behavioral adaptation and learning and memory. Since-at least in humans-MR function seems to be sex-dependent, we examined the behavioral relevance of MR in female mice exhibiting transgenic MR overexpression in the forebrain. Transgenic MR overexpression did not affect contextual fear memory or cued fear learning and memory. Moreover, MR overexpressing and control mice discriminated equally well between fear responses in a combined cue and context fear conditioning paradigm. Also context-memory in an object recognition task was unaffected in MR overexpressing mice. We conclude that MR overexpression in female animals does not affect fear conditioned responses and object recognition memory.

4.
Front Behav Neurosci ; 8: 26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567706

RESUMO

Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

5.
Front Behav Neurosci ; 7: 56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23754993

RESUMO

Corticosterone facilitates behavioral adaptation to a novel experience in a coordinate manner via mineralocorticoid (MR) and glucocorticoid receptors (GR). Initially, MR mediates corticosterone action on appraisal processes, risk assessment and behavioral flexibility and then, GR activation promotes consolidation of the new information into memory. Here, we studied on the circular holeboard (CHB) the spatial performance of female mice with genetic deletion of MR from the forebrain (MR(CaMKCre)) and their wild type littermates (MR(flox/flox) mice) over the estrous cycle and in response to an acute stressor. The estrous cycle had no effect on the spatial performance of MR(flox/flox) mice and neither did the acute stressor. However, the MR(CaMKCre) mutants needed significantly more time to find the exit and made more hole visit errors than the MR(flox/flox) mice, especially when in proestrus and estrus. In addition, stressed MR(CaMKCre) mice in estrus had a shorter exit latency than the control estrus MR(CaMKCre) mice. About 70% of the female MR(CaMKCre) and MR(flox/flox) mice used a hippocampal (spatial, extra maze cues) rather than the caudate nucleus (stimulate-response, S-R, intra-maze cue) strategy and this preference did neither change over the estrous cycle nor after stress. However, stressed MR(CaMKCre) mice using the S-R strategy needed significantly more time to find the exit hole as compared to the spatial strategy using mice suggesting that the MR could be needed for the stress-induced strategy switch toward a spatial strategy. In conclusion, the results suggest that loss of MR interferes with performance of a spatial task especially when estrogen levels are high suggesting a strong interaction between stress and sex hormones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA