Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 11(5): e1004264, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26020510

RESUMO

An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.


Assuntos
Proteínas/química , Saccharomyces cerevisiae/química , Algoritmos , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Ácidos Graxos/química , Deleção de Genes , Sistema de Sinalização das MAP Quinases , Modelos Genéticos , Modelos Teóricos , Mutação , Fenótipo , Proteoma , Reprodutibilidade dos Testes , Sirolimo/química , Software , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA