Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677831

RESUMO

In this work, we employed EEM-PARAFAC (fluorescence excitation-emission matrices-parallel factor analysis) as a low-cost tool to study the oxidation pathways of (fluoro)quinolones. Amounts of 12.5 µM of enrofloxacin (ENR), ciprofloxacin (CIP), ofloxacin (OFL), oxolinic acid (OA), and flumequine (FLU), as individual solutions, were irradiated under UVA light. A 5-component PARAFAC model was obtained, four of them related to the parent pollutants, named as ENR-like (including CIP), OFL-like, OA-like, and FLU-like, and an additional one related to photoproducts, called ENRox-like (with an emission red-shift with respect to the ENR-like component). Mass spectrometry was employed to correlate the five PARAFAC components with their plausible molecular structures. Results indicated that photoproducts presenting: (i) hydroxylation or alkyl cleavages exhibited fingerprints analogous to those of the parent pollutants; (ii) defluorination and hydroxylation emitted within the ENRox-like region; (iii) the aforementioned changes plus piperazine ring cleavage emitted within the OA-like region. Afterwards, the five antibiotics were mixed in a single solution (each at a concentration of 0.25 µM) in seawater, PARAFAC being also able to deconvolute the fingerprint of humic-like substances. This approach could be a potential game changer in the analysis of (fluorescent) contaminants of emerging concern removals in complex matrices, giving rapid visual insights into the degradation pathways.


Assuntos
Quimiometria , Poluentes Químicos da Água , Fotólise , Espectrometria de Fluorescência/métodos , Fluoroquinolonas/química , Ciprofloxacina/química , Enrofloxacina/análise , Ofloxacino/análise , Espectrometria de Massas , Ácido Oxolínico , Poluentes Químicos da Água/química , Análise Fatorial , Substâncias Húmicas/análise
2.
Sci Total Environ ; 852: 158338, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041605

RESUMO

Commercial (fluoro)quinolones ((F)Qs), ciprofloxacin (CIP), enrofloxacin (ENR), ofloxacin (OFL), oxolinic acid (OA) and flumequine (FLU) (3 µM each), were degraded with solar-photo-Fenton in a compound parabolic concentrator photoreactor (total volume 5 L) in ultra-pure water at pH = 5.0, salty water at pH = 5.0, and simulated wastewater at pH = 5.0 and 7.5. Iron speciation (its hydrolysis and the complexation with (F)Qs 15 µM and/or chlorides 0.5 M) was calculated at pH 5.0, observing, negligible formation of Fe(III)-chloride complexes, and that >99 % of the total (F)Qs are forming complexes stoichiometry 1:1 with Fe(III) (which also increases the percentage of Fe(OH)2+), being minoritarian the free antibiotic form. On the other hand, EEM-PARAFAC (fluorescence excitation-emission matrices-parallel factor analysis) was employed to simultaneously study the behaviour of: i) 4 structure-related groups corresponding to parent pollutants and slightly oxidised by-products, ENR-like (including CIP), OFL-like, OA-like, FLU-like; ii) intermediates still showing (F)Q characteristics (exhibiting analogous fluorescent fingerprint to ENR-like one, but shifted to shorter wavelengths); iii) humic-like substances. The scores from the 4 PARAFAC components corresponding to the parent pollutants were plotted vs. accumulated energy, exhibiting slower decay than their individual removals (measured with HPLC-UV/vis) due to the contribution of the aforementioned by-products to the overall fluorescence. Moreover, thiabendazole (TBZ) 3 µM was added as fluorescence interference. The presence of (F)Qs greatly enhanced TBZ degradation due to (F)Q-Fe(III) complex formation, keeping iron active at pH = 5.0 for Fenton process. The EEM-PARAFAC model was able to recognise the former six components plus an additional one attributable to TBZ-like.


Assuntos
Poluentes Ambientais , Quinolonas , Poluentes Químicos da Água , Águas Residuárias , Água , Tiabendazol , Enrofloxacina , Poluentes Químicos da Água/análise , Cloretos , Compostos Férricos , Peróxido de Hidrogênio/química , Ácido Oxolínico , Substâncias Húmicas/análise , Ferro/química , Ofloxacino , Corantes , Ciprofloxacina , Antibacterianos
3.
Nanomaterials (Basel) ; 12(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014647

RESUMO

The assessment of environmental sustainability has assumed great importance during the study and implementation of a new process, including those aimed to waste valorization and reuse. In this research, the environmental performance of the photo-Fenton processes was evaluated using the life cycle assessment (LCA) methodology. In particular, photo-Fenton conducted in mild conditions (almost neutral pH), using soluble bio-organic substances as auxiliary agents were compared with the "classic" photo-Fenton run at pH 2.8. The evaluation was carried out both, at the laboratory level and at pilot plant scale. LCA analysis shows that working in mild conditions reduces the environmental burden associated with the use of chemicals. On the other hand, the occurring drop in effectiveness significantly increases the overall impact, thus evidencing the need of considering the process as a whole.

4.
ACS Omega ; 7(4): 3151-3157, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128227

RESUMO

The application of humic-like substances (HLSs) in advanced oxidation processes for wastewater treatment is summarized in this work. HLSs share important characteristics with humic substances, and they can be isolated from different wastes using procedures that are related with their pH-dependent solubility. They are able to generate, upon irradiation, reactive species such as hydroxyl radicals and singlet oxygen or triplet excited states. Although photochemical removal of pollutants can be reached by HLSs, in general, irradiation times are very long. HLSs are good metal-complexing agents, and the Fe-HLS complex is able to participate in (photo)-Fenton-like processes at mild pH, preventing iron deactivation. Finally, novel hybrid materials with environmental applications have been synthesized using HLSs; in some cases, they also contain iron oxides, which allow a better separation but also the ability to drive heterogeneous (photo)-Fenton processes.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34835712

RESUMO

The development of treatment trains for pollutant degradation employing zerovalent iron has been attracting a lot of interest in the last few years. This approach consists of pre-treatment only with zerovalent iron, followed by a Fenton oxidation taking advantage of the iron ions released in the first step. In this work, the advantages/disadvantages of this strategy were studied employing commercial zerovalent iron microparticles (mZVI). The effect of the initial amount of mZVI, H2O2, pH, conductivity, anions and dissolved oxygen were analysed using p-nitrobenzoic acid (PNBA) as model pollutant. 83% reduction of PNBA 6 µM into p-aminobenzoic acid (PABA) was achieved in natural water at an initial pH 3.0 and 1.4 g/L of mZVI, under aerobic conditions, in 2 h. An evaluation of the convenience of removing mZVI after the reductive phase before the Fenton oxidation was investigated together with mZVI reusability. The Fenton step against the more reactive PABA required 50 mg/L of H2O2 to achieve more than 96% removal in 15 min at pH 7.5 (final pH from the reductive step). At least one complete reuse cycle (reduction/oxidation) was achieved with the separated mZVI. This approach might be interesting to treat wastewater containing pollutants initially resistant to hydroxyl radicals.

6.
ACS Omega ; 6(7): 4663-4671, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644573

RESUMO

In this work, fluorescence excitation-emission matrices (EEMs), in combination with the chemometric tool and parallel factor analysis (PARAFAC), have been proposed as an unexplored methodology to follow the removal of the fluorescent contaminants of emerging concern, fluoroquinolones (FQs). Ofloxacin, enrofloxacin, and sarafloxacin were degraded by different advanced oxidation processes employing simulated sunlight (hν): photolysis, H2O2/hν, and photo-Fenton. All experiments were performed in ultrapure water at three different pH values: 2.8, 5.0, and 7.0. With the obvious advantage of multivariate analysis methods, EEM-PARAFAC allowed the monitoring of degradation from the overall substances (original and formed ones) through simultaneous, rapid, and cost-efficient fluorescence spectroscopy determinations. A five-component model was found to best fit the experimental data, allowing us to (i) describe the decay of the fluorescence signals of the three parent pollutants, (ii) follow the kinetics profile of FQ-like byproducts with similar EEM fingerprints than the original FQs, and (iii) observe the formation of two families of reaction intermediates with completely different EEMs. Results were finally correlated with high pressure liquid chromatography, total organic carbon, and toxicity tests on Escherichia coli, showing good agreement with all the studied techniques.

7.
Chemosphere ; 270: 129791, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33556815

RESUMO

Enrofloxacin (ENR) belongs to the fluoroquinolone (FQ) antibiotics family, which are contaminants of emerging concern frequently found in effluents. Although many works studying photo-Fenton process for FQ degradation have been reported, there are no reports analysing in deep the effect of iron complexation, as well as other metals, towards FQs' photolysis, which, evidently, also contributes in the overall degradation of the pollutant. Therefore, in this work, we report a comparative study between the photochemical fate of ENR and its complex with Fe(III) under simulated sunlight irradiation. In addition, the effect of dissolved oxygen, self-sensitization process, and H2O2 addition on the studied photochemical systems are also investigated. Results indicate that, for free and iron-complexed ENR, singlet oxygen (1O2) is generated from the interaction of its triplet state with ground state oxygen. Half-life time (t1/2) of ENR under sun simulated conditions is estimated to be around 22 min, while complexation with iron enhances its photostability, leading to a t1/2 of 2.1 h. Such finding indicates that at least the presence of iron, might notably increase the residence time of these pollutants in the environment. Eventually, only with the addition of H2O2, the FQ-iron complex is efficiently degraded due to photo-Fenton process even at circumneutral pH values due to the high stability of the formed complex. Finally, after LC/FT-ICR MS analysis, 39 photoproducts are detected, of which the 14 most abundant ones are identified. Results indicate that photoproducts formation is pH and iron dependent.


Assuntos
Ferro , Poluentes Químicos da Água , Enrofloxacina , Peróxido de Hidrogênio , Fotólise
8.
Sci Total Environ ; 719: 137331, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112955

RESUMO

The degradation of enrofloxacin (ENR) by direct photolysis, Fenton and solar photo-Fenton processes has been studied in different water matrices, such as ultra-pure water (MQ), tap water (TW) and highly saline water (SW). Reactions have been conducted at initial pH 2.8 and 5.0. At pH = 2.8, HPLC analyses showed a fast removal of ENR by (solar photo)-Fenton treatments in all studied water matrices, whereas a 40% removal was observed after 120 min of photolysis. However, TOC measurements showed that only solar photo-Fenton was able to produce significant mineralization (80% after 120 min of treatment); differences between ENR removal and mineralization can be attributed to the release of important amounts of reaction by-products. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) were employed to gain further insight into the nature of these by-products and their time-course profile, obtaining a 5-component model. EEM-PARAFAC results indicated that photolysis is not able to produce important changes in the fluoroquinolone structure, in sharp contrast with (solar photo)-Fenton, where decrease of the components associated with fluoroquinolone core was observed. Agar diffusion tests employing E. coli and S, aureus showed that the antibiotic activity decreased in parallel with the destruction of the fluoroquinolone core.


Assuntos
Fotólise , Bioensaio , Enrofloxacina , Escherichia coli , Análise Fatorial , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Oxirredução , Água , Poluentes Químicos da Água
9.
Nanomaterials (Basel) ; 9(8)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412563

RESUMO

In the present work, the photo-Fenton degradation of pentachlorophenol (PCP, 1 mg/L) has been studied under simulated and natural solar irradiation; moreover, the effect on the process efficiency of urban waste-derived soluble bio-based substances (SBO), structurally comparable to humic acids, has been investigated. Experiments showed a crucial role of PCP photolysis, present in the solar pilot plant and hindered by the Pyrex® filter present in the solar simulator. Indeed, the SBO screen negatively affects PCP degradation when working under natural solar light, where the photolysis of PCP is relevant. In contrast, in the absence of PCP photolysis, a significant improvement of the photo-Fenton process was observed when added to SBO. Furthermore, SBO were able to extend the application of the photo-Fenton process at circumneutral pH values, due to their ability to complex iron, avoiding its precipitation as oxides or hydroxides. This positive effect has been observed at higher concentration of Fe(II) (4 mg/L), whereas at 1 mg/L, the degradation rates of PCP were comparable in the presence and absence of SBO.

10.
Nanomaterials (Basel) ; 9(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366049

RESUMO

The photodegradation of an aqueous solution of diclofenac (DCF) has been attempted in the presence of hydrogen peroxide and organic/inorganic hybrid magnetic materials under simulated and real solar light. The hybrid magnetic materials have been prepared via coprecipitation synthesis starting from iron(II) and iron(III) inorganic salts in the presence of bioderived organic products (i.e., chitosan or bio-based substances isolated from commercially available composted urban biowastes) acting as stabilizers of the iron-containing phase. In addition to the as prepared hybrid materials, the corresponding materials obtained after a pyrolytic step at low temperature (550 °C) have been tested. The obtained results evidenced the capability of the materials to activate hydrogen peroxide at mild pH promoting DCF (photo) degradation. All the materials feature also as adsorbents since a decrease of DCF is observed also when working in the dark and in the absence of hydrogen peroxide.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30873897

RESUMO

Urban-waste bio-organic substances (UW-BOS) have been shown to be capable of extending the photo-Fenton reaction to mildly acidic conditions. In this study, the effects of pH (3-7), UW-BOS, H2O2 and iron concentrations on the photo-Fenton process were systematically assessed using a Doehlert experimental design and response surface methodology for two UW-BOS (CVT230 and FORSUD). Solutions of the model antibiotic sulfadiazine (SDZ) were irradiated in a solar simulator equipped with a 550 W Xenon lamp. The results showed that for UW-BOS contents below 30 mg L-1, SDZ removal proceeds at pH 5 with similar rates for both CVT230 and FORSUD, regardless of Fe(III) concentration. For 50 mg L-1 of UW-BOS or higher, CVT230 performs better than FORSUD, even for low Fe(III) content (1-3 mg L-1). In contrast, half-life times of 35-40 min can only be achieved under mildly acidic conditions with FORSUD for iron concentrations higher than 10 mg L-1. The better performance of CVT230 can be associated with its high hydrophilic/hydrophobic ratio, low E2:E3, higher iron content and possibly higher yields of triplet reactive species generation upon solar irradiation. The most appropriate conditions for each UW-BOS studied are discussed for the first time, which are advantageous for possible engineered applications.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Luz Solar , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/farmacocinética , Ácidos/química , Reatores Biológicos , Cidades , Compostos Férricos/química , Humanos , Peróxido de Hidrogênio/farmacocinética , Concentração de Íons de Hidrogênio , Oxirredução/efeitos da radiação , Fotólise , Projetos de Pesquisa , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos
12.
ACS Omega ; 4(26): 21698-21703, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891048

RESUMO

Humiclike substances (HLS) have been demonstrated to be useful auxiliaries to drive the (photo)-Fenton process at mild pH, by avoiding iron inactivation via formation of active complexes. However, the actual performance of the process is affected by a manifold of opposite processes. In this work, the generation of hydroxyl radical-like reactive species in the Fentonlike process has been investigated using electron paramagnetic resonance, employing 5,5-dimethyl-1-pyrroline-N-oxide as a probe molecule. The signal obtained with the Fe(II)-HLS-H2O2 system at pH = 5 was very intense but decreased with time, in line with the difficult reduction of the formed Fe(III) to Fe(II). On the contrary, the signal of the Fe(III)-HLS-H2O2 system was weak but stable. The most intense signal was observed at HLS concentration of ca. 30 mg/L. Interestingly, the performance of the Fenton system at pH = 5 to degrade caffeine followed the same trends, although caffeine removal was very low after 1 h of irradiation. The results were more evident in a solar simulated photo-Fenton process, where an increase in the abatement of caffeine was observed until an HLS concentration of 30 mg/L, where 98% removal was reached after 1 h.

13.
Chemosphere ; 198: 139-146, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29421723

RESUMO

Humic-like substances (HLS) extracted from urban wastes have been tested as auxiliaries for the photo-Fenton removal of thiabendazole (TBZ) under simulated sunlight. Experimental design methodology based on Doehlert matrices was employed to check the effects of hydrogen peroxide concentration, HLS amount as well as TBZ loading; this last parameter was studied in the range 25-100 mg/L, to include values below and above the limit of solubility at pH = 5. Very satisfactory results were reached when TBZ was above solubility if HLS and H2O2 amounts were high. This could be attributed to an interaction of HLS-TBZ that enhances the solubility of the pollutant. Additional evidence supporting the latter interaction was obtained by fluorescence measurements (excitation emission matrices) and parallel factor analysis (PARAFAC).


Assuntos
Substâncias Húmicas/análise , Peróxido de Hidrogênio/química , Ferro/química , Luz Solar , Tiabendazol/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Análise Fatorial , Espectrometria de Fluorescência , Tiabendazol/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação
14.
ACS Omega ; 3(10): 13073-13080, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458028

RESUMO

The valorization of olive oil mill solid wastes (OMW) has been addressed by considering it as a possible source of humic-like substances (HLSs), to be used as auxiliary substances for photo-Fenton, employing caffeine as a target pollutant to test the efficiency of this approach. The OMW-HLS isolation encompassed the OMW basic hydrolysis, followed by ultrafiltration and drying. OMW-HLS structural features have been investigated by means of laser light scattering, fluorescence, size exclusion chromatography, and thermogravimetric analysis; moreover, the capability of OMW-HLS to generate reactive species under irradiation has been investigated using spin-trap electronic paramagnetic resonance. The caffeine degradation by means of photo-Fenton process driven at pH = 5 was significantly increased by the addition of 10 mg/L of OMW-HLS. Under the mechanistic point of view, it could be hypothesized that singlet oxygen is not playing a relevant role, whereas other oxidants (mainly OH• radicals) can be considered as the key species in promoting caffeine degradation.

15.
Chemosphere ; 190: 327-336, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28992485

RESUMO

Flusilazole is an organosilane fungicide used for treatments in agriculture and horticulture for control of diseases. The reaction kinetics and mechanism of flusilazole with sulfate and hydroxyl radicals were studied. The rate constant of the radicals with the fungicide were determined by laser flash photolysis of peroxodisulfate and hydrogen peroxide. The results were 2.0 × 109 s-1M-1 for the reaction of the fungicide with HO and 4.6 × 108 s-1 M-1 for the same reaction with SO4- radicals. The absorption spectra of organic intermediates detected by laser flash photolysis of S2O82- with flusilazole, were identified as α-aminoalkyl and siloxyl radicals and agree very well with those estimated employing the time-dependent density functional theory with explicit account for bulk solvent effects. In the continuous photolysis experiments, performed by photo-Fenton reaction of the fungicide, the main degradation products were: (bis(4-fluorophenyl)-hydroxy-methylsilane) and the non-toxic silicic acid, diethyl bis(trimethylsilyl) ester, in ten and twenty minutes of reaction, respectively.


Assuntos
Radical Hidroxila/química , Silanos/química , Sulfatos/química , Triazóis/química , Radicais Livres/química , Fungicidas Industriais/química , Peróxido de Hidrogênio/química , Cinética , Fotólise
16.
Photochem Photobiol ; 90(6): 1467-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25065677

RESUMO

In this work, a kinetic model, in combination with time-resolved experiments, is applied to assess the involvement of ·OH in the photodegradation of emerging pollutants (EPs) by means of advanced oxidation processes. In contrast with the general assumption, quenching of the short-lived ·OH in the real waters by the (highly diluted) EPs must be very inefficient, so removal of EPs cannot purely rely on the generation and reaction of ·OH. This suggests that more complex pathways have to be considered to explain the photodegradation of EPs actually achieved under the employed oxidative conditions, possibly involving other reactive species with longer lifetimes or chain degradation processes.

17.
Water Res ; 47(1): 351-62, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23137829

RESUMO

The reaction of phosphor-containing pesticides such as methidathion (MT) and dimethoate (DM) with dichloride radical anions (Cl(2)(·-)) was investigated. The second order rate constants (1.3 ± 0.4) × 10(8) and (1.1 ± 0.4) × 10(8) M(-1) s(-1) were determined for the reaction of Cl(2)(·-) with MT and DM, respectively. A reaction mechanism involving an initial charge transfer from the sulfide groups of the insecticides to Cl(2)(·-) is proposed and supported by the identified transient intermediates and reaction products. The formation of chlorinated byproducts was determined. The unexpected consequences of an efficient Cl(2)(·-) reactivity towards MT and DM on the degradation capacity by Advanced Oxidation Procedures applied to polluted waters containing the insecticides and Cl(-) anions is discussed.


Assuntos
Ânions , Cloretos/química , Dimetoato/química , Inseticidas/química , Compostos Organotiofosforados/química , Simulação por Computador , Cinética , Modelos Teóricos , Oxirredução , Poluentes Químicos da Água/química
18.
Water Res ; 46(15): 4732-40, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22766461

RESUMO

The photodegradation of a mixture of the emerging pollutants (EPs) clofibric acid, amoxicillin, acetamiprid, acetaminophen, carbamazepine, and caffeine was studied under irradiation with a xenon lamp. The quantum efficiencies of the EPs were determined when irradiated individually. Experiments with the mixture of the EPs showed that indirect photoprocesses attributable to interaction between EPs can either enhance the photodegradation rate by photosensitization or decrease it by quenching processes. The addition of humic substances (HS) to the solutions resulted in an increase of indirect photoprocesses with higher effects on acetaminophen and carbamazepine; this was more remarkable when a filter was used to cut off radiation in the range 280-295 nm. Experiments carried out with chemical probes indicated that the triplet excited states of HS play a major role in the photosensitization process, although the contribution of other species cannot be completely ruled out. Additionally, V. fischeri toxicity tests showed a synergistic effect produced by the mixture of EPs before irradiation. Photodegradation resulted in an enhanced toxicity of the solution at the initial steps of the process, which was associated both with synergistic effects and with the formation of toxic photodegradation by-products of clofibric acid.


Assuntos
Poluentes Ambientais/química , Substâncias Húmicas , Processos Fotoquímicos , Poluentes Ambientais/toxicidade , Teoria Quântica
19.
Water Res ; 46(11): 3479-89, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22542132

RESUMO

The reaction of three chloronicotinoid insecticides, namely Imidacloprid (IMD), Thiacloprid (THIA) and Acetamiprid (ACT), with carbonate radicals (CO·3⁻) was investigated. The second order rate constants (4 ± 1) × 106, (2.8 ± 0.5) × 105, and (1.5 ± 1) × 105 M⁻¹ s⁻¹ were determined for IMD, THIA and ACT, respectively. The absorption spectra of the organic intermediates formed after CO·3⁻ attack to IMD is in line with those reported for α-aminoalkyl radicals. A reaction mechanism involving an initial charge transfer from the amidine nitrogen of the insecticides to CO·3⁻ is proposed and further supported by the identified reaction products. The pyridine moiety of the insecticides remains unaffected until nicotinic acid is formed. CO·3⁻ radical reactivity towards IMD, ACT, and THIA is low compared to that of HO• radicals, excited triplet states, and ¹O2, and is therefore little effective in depleting neonicotinoid insecticides.


Assuntos
Carbonatos/química , Imidazóis/química , Inseticidas/química , Nitrocompostos/química , Piridinas/química , Tiazinas/química , Radicais Livres/química , Neonicotinoides , Oxirredução , Água/química
20.
Photochem Photobiol Sci ; 11(6): 1032-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22421904

RESUMO

The knowledge of photochemical kinetics in colloidal systems is important in understanding environmental photochemistry on dispersed solid surfaces. As model materials for the chemically sorbed organic compounds present in natural environments, modified silica nanoparticles (NPs) were obtained here by condensation of the silanol groups of fumed silica nanoparticles with 4-methoxybenzyl alcohol. These particles were characterized by different techniques. To evaluate their toxicity, the inhibition of the natural luminescence emission of the marine bacterium Vibrio fischeri in suspensions of the particles was measured. Laser flash-photolysis experiments (λ(exc) = 266 nm) performed with NP suspensions in acetonitrile-aqueous phosphate buffer mixtures showed the formation of the lowest triplet excited state of the chemisorbed organic groups (λ(max) = 390 nm). DFT calculations of the absorption spectrum of this radical support the assignment. From the calculated triplet energy, a thermodynamically favorable energy transfer from these triplet states to oxygen to yield singlet molecular oxygen is predicted. A value of 0.09 was measured for the quantum yield of singlet molecular oxygen generation by air-saturated suspensions of the nanoparticles in the mixture of solvents acetonitrile-aqueous phosphate buffer. The quantum yield of singlet molecular oxygen generation by the free 4-methoxybenzyl alcohol in the same solvent is 0.31.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA