Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2310264121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319963

RESUMO

Epigenetic regulation plays a crucial role in the pathogenesis of autoimmune diseases such as inflammatory arthritis. DNA hypomethylating agents, such as decitabine (DAC), have been shown to dampen inflammation and restore immune homeostasis. In the present study, we demonstrate that DAC elicits potent anti-inflammatory effects and attenuates disease symptoms in several animal models of arthritis. Transcriptomic and epigenomic profiling show that DAC-mediated hypomethylation regulates a wide range of cell types in arthritis, altering the differentiation trajectories of anti-inflammatory macrophage populations, regulatory T cells, and tissue-protective synovial fibroblasts (SFs). Mechanistically, DAC-mediated demethylation of intragenic 5'-Cytosine phosphate Guanine-3' (CpG) islands of the transcription factor Irf8 (interferon regulatory factor 8) induced its re-expression and promoted its repressor activity. As a result, DAC restored joint homeostasis by resetting the transcriptomic signature of negative regulators of inflammation in synovial macrophages (MerTK, Trem2, and Cx3cr1), TREGs (Foxp3), and SFs (Pdpn and Fapα). In conclusion, we found that Irf8 is necessary for the inhibitory effect of DAC in murine arthritis and that direct expression of Irf8 is sufficient to significantly mitigate arthritis.


Assuntos
Artrite , Azacitidina , Camundongos , Animais , Decitabina/farmacologia , Azacitidina/farmacologia , Epigênese Genética , Metilação de DNA , Fatores Reguladores de Interferon/metabolismo , Inflamação/genética , Artrite/genética , Anti-Inflamatórios , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
2.
Elife ; 112022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916374

RESUMO

Osteoarthritis is the most common joint disease in the world with significant societal consequences but lacks effective disease-modifying interventions. The pathophysiology consists of a prominent inflammatory component that can be targeted to prevent cartilage degradation and structural defects. Intracellular metabolism has emerged as a culprit of the inflammatory response in chondrocytes, with both processes co-regulating each other. The role of glutamine metabolism in chondrocytes, especially in the context of inflammation, lacks a thorough understanding and is the focus of this work. We display that mouse chondrocytes utilize glutamine for energy production and anabolic processes. Furthermore, we show that glutamine deprivation itself causes metabolic reprogramming and decreases the inflammatory response of chondrocytes through inhibition of NF-κB activity. Finally, we display that glutamine deprivation promotes autophagy and that ammonia is an inhibitor of autophagy. Overall, we identify a relationship between glutamine metabolism and inflammatory signaling and display the need for increased study of chondrocyte metabolic systems.


Assuntos
Condrócitos , Osteoartrite , Animais , Cartilagem , Condrócitos/metabolismo , Glutamina/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoartrite/metabolismo
3.
Bone Res ; 10(1): 12, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35145063

RESUMO

Osteoarthritis is a joint disease characterized by a poorly-defined inflammatory response that does not encompass a massive immune cell infiltration yet contributes to cartilage degradation and loss of joint mobility, suggesting a chondrocyte intrinsic inflammatory response. Using primary chondrocytes from joints of osteoarthritic mice and patients, we first show that these cells express ample pro-inflammatory markers and RANKL in an NF-κB dependent manner. The inflammatory phenotype of chondrocytes was recapitulated by exposure of chondrocytes to IL-1ß and bone particles, which were used to model bone matrix breakdown products revealed to be present in synovial fluid of OA patients, albeit their role was not defined. We further show that bone particles and IL-1ß can promote senescent and apoptotic changes in primary chondrocytes due to oxidative stress from various cellular sources such as the mitochondria. Finally, we provide evidence that inflammation, oxidative stress and senescence converge upon IκB-ζ, the principal mediator downstream of NF-κB, which regulates expression of RANKL, inflammatory, catabolic, and SASP genes. Overall, this work highlights the capacity and mechanisms by which inflammatory cues, primarily joint degradation products, i.e., bone matrix particles in concert with IL-1ß in the joint microenvironment, program chondrocytes into an "inflammatory phenotype" which inflects local tissue damage.

4.
Methods Mol Biol ; 2366: 267-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236644

RESUMO

The skeletal system is constantly undergoing turnover in order to create strong, organized structures, requiring the bone breakdown and building properties by osteoclasts and osteoblasts, respectively. However, in pathological disease states, excessive osteoclast activity can cause bone loss leading to increase in morbidity and mortality. Osteoclasts differentiate from macrophages in the presence of various factors. M-CSF is a cytokine that is required to maintain the survival of macrophages. However, RANKL is the critical factor required for differentiation of osteoclasts. RANKL is produced from a variety of different cell types such as osteoblasts and osteocytes. RANKL binds to RANK, its receptor, on the surface of osteoclast precursors, which activates various signaling pathways to drive the transcription and production of genes important for osteoclast formation. The major signaling pathway activated by RANKL-RANK interaction is the NF-κB pathway. The NF-κB pathway is the principle inflammatory response pathway activated by a variety of stimuli such as inflammatory cytokines, genotoxic stress, and other factors. This likely explains the finding that inflammatory diseases often present with some component of increased osteoclast formation and activity, driving bone loss. Determining the signaling mechanisms downstream of RANKL can provide valuable therapeutic targets for the treatment of bone loss in various disease states.


Assuntos
Transdução de Sinais , Diferenciação Celular , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese , Ligante RANK/metabolismo , Fator 6 Associado a Receptor de TNF
5.
Nat Commun ; 11(1): 3427, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647171

RESUMO

The contribution of inflammation to the chronic joint disease osteoarthritis (OA) is unclear, and this lack of clarity is detrimental to efforts to identify therapeutic targets. Here we show that chondrocytes under inflammatory conditions undergo a metabolic shift that is regulated by NF-κB activation, leading to reprogramming of cell metabolism towards glycolysis and lactate dehydrogenase A (LDHA). Inflammation and metabolism can reciprocally modulate each other to regulate cartilage degradation. LDHA binds to NADH and promotes reactive oxygen species (ROS) to induce catabolic changes through stabilization of IκB-ζ, a critical pro-inflammatory mediator in chondrocytes. IκB-ζ is regulated bi-modally at the stages of transcription and protein degradation. Overall, this work highlights the function of NF-κB activity in the OA joint as well as a ROS promoting function for LDHA and identifies LDHA as a potential therapeutic target for OA treatment.


Assuntos
Condrócitos/metabolismo , Lactato Desidrogenase 5/metabolismo , Terapia de Alvo Molecular , Osteoartrite/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aerobiose , Animais , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Citoproteção/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/farmacologia , Articulação do Joelho/patologia , Meniscos Tibiais/cirurgia , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NAD/metabolismo , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/patologia
6.
Elife ; 92020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32202502

RESUMO

Inflammatory osteolysis is governed by exacerbated osteoclastogenesis. Ample evidence points to central role of NF-κB in such pathologic responses, yet the precise mechanisms underpinning specificity of these responses remain unclear. We propose that motifs of the scaffold protein IKKγ/NEMO partly facilitate such functions. As proof-of-principle, we used site-specific mutagenesis to examine the role of NEMO in mediating RANKL-induced signaling in mouse bone marrow macrophages, known as osteoclast precursors. We identified lysine (K)270 as a target regulating RANKL signaling as K270A substitution results in exuberant osteoclastogenesis in vitro and murine inflammatory osteolysis in vivo. Mechanistically, we discovered that K270A mutation disrupts autophagy, stabilizes NEMO, and elevates inflammatory burden. Specifically, K270A directly or indirectly hinders binding of NEMO to ISG15, a ubiquitin-like protein, which we show targets the modified proteins to autophagy-mediated lysosomal degradation. Taken together, our findings suggest that NEMO serves as a toolkit to fine-tune specific signals in physiologic and pathologic conditions.


The human skeleton contains over 200 bones that together act as an internal framework for the body. Over our lifetime, the body constantly removes older bone tissue from the skeleton and replaces it with new bone tissue. This "bone remodeling" also controls how bones are repaired after being damaged by injuries, disease or normal wear and tear. Cells known as osteoclasts are responsible for breaking down old bone tissue and participate in repairing damaged bone. A cellular pathway known as NF-kB signaling stimulates other cells called "bone marrow macrophages" to become osteoclasts. A certain level of NF-kB signaling is required to maintain a healthy skeleton. However, under certain inflammatory conditions, the level of NF-kB signaling becomes too high causing hyperactive osteoclasts to accumulate and inflict severe bone breakdown. This abnormal osteoclast activity leads to eroded and fragile bones and joints, as is the case in diseases such as rheumatoid arthritis and osteoporosis. Previous studies have shown that a protein called NEMO is a core component of the NF-kB signal pathway, but the precise role of NEMO in the diseased response remained unclear. Adapala, Swarnkar, Arra et al. have now used site-directed mutagenesis approach to study the role of NEMO in bone marrow macrophages in mice. The experiments showed that one specific site within the NEMO protein, referred to as lysine 270, is crucial for its role in controlling osteoclasts and the breakdown of bone tissue. Mutating NEMO at lysine 270 led to uncontrolled NF-kB signaling in the bone marrow macrophages. Further experiments showed that lysine 270 served as a sensor to allow NEMO to bind another protein called ISG15, which in turn helped to decrease NF-kB signaling and slow down the erosion of the bone. These findings suggest that site-specific targeting of NEMO, rather than inhibiting the whole NF-kB pathway, may help to reduce the symptoms of bone disease while maintaining the beneficial roles of this essential pathway. However, additional research is required to identify NEMO sites responsible for controlling the inflammatory component.


Assuntos
Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteólise/metabolismo , Animais , Células da Medula Óssea , Regulação da Expressão Gênica , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Artropatias/metabolismo , Artropatias/patologia , Camundongos , Camundongos Transgênicos , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoclastos/fisiologia , Osteólise/genética , Ligante RANK/genética , Ligante RANK/metabolismo
7.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847438

RESUMO

Patients with gastrointestinal diseases frequently suffer from skeletal abnormality, characterized by reduced bone mineral density, increased fracture risk, and/or joint inflammation. This pathological process is characterized by altered immune cell activity and elevated inflammatory cytokines in the bone marrow microenvironment due to disrupted gut immune response. Gastrointestinal disease is recognized as an immune malfunction driven by multiple factors, including cytokines and signaling molecules. However, the mechanism by which intestinal inflammation magnified by gut-residing actors stimulates bone loss remains to be elucidated. In this article, we discuss the main risk factors potentially contributing to intestinal disease-associated bone loss, and summarize current animal models, illustrating gut-bone axis to bridge the gap between intestinal inflammation and skeletal disease.


Assuntos
Doenças Ósseas Metabólicas/patologia , Osso e Ossos/patologia , Gastroenteropatias/patologia , Inflamação/patologia , Intestinos/patologia , Animais , Humanos
8.
Sci Rep ; 9(1): 10429, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320680

RESUMO

Chronic inflammatory insults compromise immune cell responses and ultimately contribute to pathologic outcomes. Clinically, it has been suggested that bone debris and implant particles, such as polymethylmethacrylate (PMMA), which are persistently released following implant surgery evoke heightened immune, inflammatory, and osteolytic responses that contribute to implant failure. However, the precise mechanism underlying this pathologic response remains vague. TREGS, the chief immune-suppressive cells, express the transcription factor Foxp3 and are potent inhibitors of osteoclasts. Using an intra-tibial injection model, we show that PMMA particles abrogate the osteoclast suppressive function of TREGS. Mechanistically, PMMA particles induce TREG instability evident by reduced expression of Foxp3. Importantly, intra-tibial injection of PMMA initiates an acute innate immune and inflammatory response, yet the negative impact on TREGS by PMMA remains persistent. We further show that PMMA enhance TH17 response at the expense of other T effector cells (TEFF), particularly TH1. At the molecular level, gene expression analysis showed that PMMA particles negatively regulate Nrp-1/Foxo3a axis to induce TREG instability, to dampen TREG activity and to promote phenotypic switch of TREGS to TH17 cells. Taken together, inflammatory cues and danger signals, such as bone and implant particles exacerbate inflammatory osteolysis in part through reprogramming TREGS.


Assuntos
Inflamação/imunologia , Neuropilina-1/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Fatores de Transcrição Forkhead/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Masculino , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/imunologia , Osteólise/imunologia , Polimetil Metacrilato , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia
9.
J Bone Miner Res ; 34(10): 1880-1893, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31107556

RESUMO

Skeletal abnormalities are common comorbidities of inflammatory bowel disease (IBD). Patients suffering from IBD, including ulcerative colitis and Crohn's disease, present with skeletal complications. However, the mechanism underpinning IBD-associated bone loss remains vague. Intestinal inflammation generates an inflammatory milieu at the intestinal epithelium that leads to dysregulation of mucosal immunity through gut-residing innate lymphoid cells (ILCs) and other cell types. ILCs are recently identified mucosal cells considered as the gatekeeper of gut immunity and their function is regulated by intestinal epithelial cell (IEC)-secreted cytokines in response to the inflammatory microenvironment. We first demonstrate that serum as well as IECs collected from the intestine of dextran sulfate sodium (DSS)-induced colitis mice contain high levels of inflammatory and osteoclastogenic cytokines. Mechanistically, heightened inflammatory response of IECs was associated with significant intrinsic activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in IECs and increased frequency of ILC1, ILC3, and myeloid osteoclast progenitors. Validating the central role of IEC-specific NF-κB activation in this phenomenon, conditional expression of constitutively active inhibitor kappa B kinase 2 (IKK2) in IECs in mice recapitulates the majority of the cellular, inflammatory, and osteolytic phenotypes observed in the chemically induced colitis. Furthermore, conditional deletion of IKK2 from IECs significantly attenuated inflammation and bone loss in DSS-induced colitis. Finally, using the DSS-induced colitis model, pharmacologic inhibition of IKK2 was effective in reducing frequency of ILC1 and ILC3 cells, attenuated circulating levels of inflammatory cytokines, and halted colitis-associated bone loss. Our findings identify IKK2 in IECs as viable therapeutic target for colitis-associated osteopenia.


Assuntos
Reabsorção Óssea/metabolismo , Colite/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , NF-kappa B/metabolismo , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética
10.
Bone ; 123: 86-91, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30904629

RESUMO

Cytokines and growth factors mediate inflammatory osteolysis in response to particles released from bone implants. However, the mechanism by which this process develops is not entirely clear. Blood vessels and related factors may be required to deliver immune cells and soluble factors to the injury site. Therefore, in the current study we investigated if, vascular endothelial growth factor (VEGF), which is required for angiogenesis, mediates polymethylmethacrylate (PMMA) particles-induced osteolysis. Using bone marrow derived macrophages (BMMs) and ST2 stromal cell line, we show that PMMA particles increase VEGF expression. Further, using a murine calvarial osteolysis model, we found that PMMA injection over calvaria induce significant increase in VEGF expression as well as new vessel formation, represented by von Willebrand factor (vWF) staining. Co-treatment using a VEGF-neutralizing antibody abrogated expression of vWF, indicating decreased angiogenesis. Finally, VEGF neutralizing antibody reduced expression of Tumor necrosis factor (TNF) and decreased osteoclastogenesis induced by PMMA particles in calvariae. This work highlights the significance of angiogenesis, specifically VEGF, as key driver of PMMA particle-induced inflammatory osteolysis, inhibition of which attenuates this response.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Osteólise/induzido quimicamente , Osteólise/prevenção & controle , Polimetil Metacrilato/toxicidade , Crânio/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Cimentos Ósseos/toxicidade , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Osteólise/metabolismo , Distribuição Aleatória , Crânio/metabolismo , Fator A de Crescimento do Endotélio Vascular/agonistas , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
11.
Nucleic Acids Res ; 46(11): 5776-5791, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29373715

RESUMO

More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1. All five RNA viruses significantly altered global PTM landscapes. Examination of PTM profiles of individual viral genomes isolated by affinity capture revealed a plethora of PTMs on viral RNAs, which far exceeds the handful of well-characterized modifications. Direct comparison of viral epitranscriptomes identified common and virus-specific PTMs. In particular, specific dimethylcytosine modifications were only present in total RNA from virus-infected cells, and in intracellular HCV RNA, and viral RNA from Zika and HCV virions. Moreover, dimethylcytosine abundance during viral infection was modulated by the cellular DEAD-box RNA helicase DDX6. By opening the Pandora's box on viral PTMs, this report presents numerous questions and hypotheses on PTM function and strongly supports PTMs as a new tier of regulation by which RNA viruses subvert the host and evade cellular surveillance systems.


Assuntos
Processamento Pós-Transcricional do RNA , Vírus de RNA/genética , RNA Viral/metabolismo , Linhagem Celular Tumoral , Citosina/metabolismo , RNA Helicases DEAD-box/fisiologia , Humanos , Proteínas Proto-Oncogênicas/fisiologia , Vírus de RNA/metabolismo , RNA Viral/química , Estresse Fisiológico/genética
12.
Sci Rep ; 7(1): 12600, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974699

RESUMO

NF-κB signaling is essential for osteoclast differentiation and skeletal homeostasis. We have reported recently that NUMB-like (NUMBL) protein modulates osteoclastogenesis by down regulating NF-κB activation. Herein, we decipher the mechanism underlying this phenomenon. We found that whereas NUMBL mRNA expression decreases upon stimulation of wild type (WT) bone marrow macrophages (BMMs) with RANKL, TAK1 deficiency in these cells leads to increased NUMBL and decreased TRAF6 and NEMO expression. These changes were restored upon WT-TAK1 expression, but not with catalytically inactive TAK1-K63W, suggesting that TAK1 enzymatic activity is required for these events. Forced expression of NUMBL inhibits osteoclast differentiation and function as evident by reduction in all hallmarks of osteoclastogenesis. Conversely, NUMBL-null BMMs, show increased osteoclast differentiation and mRNA expression of osteoclast marker genes. Post-translationally, K48-linked poly-ubiquitination of NUMBL is diminished in TAK1-null BMMs compared to elevated K48-poly-ubiquitination in WT cells, indicating increased stability of NUMBL in TAK1-null conditions. Further, our studies show that NUMBL directly interacts with TRAF6 and NEMO, and induces their K48-poly-ubiquitination mediated proteasomal degradation. Collectively, our data suggest that NUMBL and TAK1 are reciprocally regulated and that NUMBL acts as an endogenous regulator of NF-κB signaling and osteoclastogenesis by targeting the TAK1-TRAF6-NEMO axis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Osteogênese/genética , Fator 6 Associado a Receptor de TNF/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , NF-kappa B/genética , Osteoclastos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , RNA Mensageiro/genética , Transdução de Sinais
13.
PLoS One ; 9(3): e93108, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667334

RESUMO

AIDS is a global pandemic that has seen the development of novel and effective treatments to improve the quality of life of those infected and reduction of spread of the disease. Palmitic Acid (PA), which we identified and isolated from Sargassum fusiforme, is a naturally occurring fatty acid that specifically inhibits HIV entry by binding to a novel pocket on the CD4 receptor. We also identified a structural analogue, 2-bromopalmitate (2-BP), as a more effective HIV entry inhibitor with a 20-fold increase in efficacy. We have used the structure-activity relationship (SAR) of 2-BP as a platform to identify new small chemical molecules that fit into the various identified active sites in an effort to identify more potent CD4 entry inhibitors. To validate further drug development, we tested the PA and 2-BP scaffold molecules for genotoxic potential. The FDA and International Conference on Harmonisation (ICH) recommends using a standardized 3-test battery for testing compound genotoxicity consisting of the bacterial reverse mutation assay, mouse lymphoma assay, and rat micronucleus assay. PA and 2-BP and their metabolites tested negative in all three genotoxicty tests. 2-BP is the first derivative of PA to undergo pre-clinical screening, which will enable us to now test multiple simultaneous small chemical structures based on activity in scaffold modeling across the dimension of pre-clinical testing to enable transition to human testing.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/toxicidade , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/toxicidade , HIV/efeitos dos fármacos , HIV/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Produtos Biológicos/farmacologia , Descoberta de Drogas , Feminino , Inibidores da Fusão de HIV/farmacologia , Linfoma/patologia , Masculino , Camundongos , Testes para Micronúcleos , Palmitatos/química , Palmitatos/farmacologia , Palmitatos/toxicidade , Ácido Palmítico/química , Ácido Palmítico/farmacologia , Ácido Palmítico/toxicidade , Ratos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA