Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9940, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336995

RESUMO

The goal of pollution forecasting models is to allow the prediction and control of the air quality. Non-linear data-driven approaches based on deep neural networks have been increasingly used in such contexts showing significant improvements w.r.t. more conventional approaches like regression models and mechanistic approaches. While such deep learning models were deemed for a long time as black boxes, recent advances in eXplainable AI (XAI) allow to look through the model's decision-making process, providing insights into decisive input features responsible for the model's prediction. One XAI technique to explain the predictions of neural networks which was proven useful in various domains is Layer-wise Relevance Propagation (LRP). In this work, we extend the LRP technique to a sequence-to-sequence neural network model with GRU layers. The explanation heatmaps provided by LRP allow us to identify important meteorological and temporal features responsible for the accumulation of four major pollutants in the air ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]), and our findings can be backed up with prior knowledge in environmental and pollution research. This illustrates the appropriateness of XAI for understanding pollution forecastings and opens up new avenues for controlling and mitigating the pollutants' load in the air.

2.
Int J Epidemiol ; 51(5): 1622-1636, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35526156

RESUMO

Nearly all diseases are caused by different combinations of exposures. Yet, most epidemiological studies focus on estimating the effect of a single exposure on a health outcome. We present the Causes of Outcome Learning approach (CoOL), which seeks to discover combinations of exposures that lead to an increased risk of a specific outcome in parts of the population. The approach allows for exposures acting alone and in synergy with others. The road map of CoOL involves (i) a pre-computational phase used to define a causal model; (ii) a computational phase with three steps, namely (a) fitting a non-negative model on an additive scale, (b) decomposing risk contributions and (c) clustering individuals based on the risk contributions into subgroups; and (iii) a post-computational phase on hypothesis development, validation and triangulation using new data before eventually updating the causal model. The computational phase uses a tailored neural network for the non-negative model on an additive scale and layer-wise relevance propagation for the risk decomposition through this model. We demonstrate the approach on simulated and real-life data using the R package 'CoOL'. The presentation focuses on binary exposures and outcomes but can also be extended to other measurement types. This approach encourages and enables researchers to identify combinations of exposures as potential causes of the health outcome of interest. Expanding our ability to discover complex causes could eventually result in more effective, targeted and informed interventions prioritized for their public health impact.


Assuntos
Aprendizado de Máquina , Saúde Pública , Causalidade , Humanos , Avaliação de Resultados em Cuidados de Saúde
3.
PLoS One ; 12(8): e0181142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800619

RESUMO

Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text's category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications.


Assuntos
Documentação , Aprendizado de Máquina , Redes Neurais de Computação , Análise de Componente Principal , Máquina de Vetores de Suporte , Vocabulário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA