Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Gut Microbes ; 16(1): 2295384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38126163

RESUMO

The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Fusobacterium nucleatum/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Neoplasias Colorretais/patologia , Heptoses/metabolismo , Microambiente Tumoral
2.
Sci Rep ; 13(1): 6278, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072480

RESUMO

Alpha-protein kinase 1 (ALPK1) is a pathogen recognition receptor that detects ADP-heptose (ADPH), a lipopolysaccharide biosynthesis intermediate, recently described as a pathogen-associated molecular pattern in Gram-negative bacteria. ADPH binding to ALPK1 activates its kinase domain and triggers TIFA phosphorylation on threonine 9. This leads to the assembly of large TIFA oligomers called TIFAsomes, activation of NF-κB and pro-inflammatory gene expression. Furthermore, mutations in ALPK1 are associated with inflammatory syndromes and cancers. While this kinase is of increasing medical interest, its activity in infectious or non-infectious diseases remains poorly characterized. Here, we use a non-radioactive ALPK1 in vitro kinase assay based on the use of ATPγS and protein thiophosphorylation. We confirm that ALPK1 phosphorylates TIFA T9 and show that T2, T12 and T19 are also weakly phosphorylated by ALPK1. Interestingly, we find that ALPK1 itself is phosphorylated in response to ADPH recognition during Shigella flexneri and Helicobacter pylori infection and that disease-associated ALPK1 mutants exhibit altered kinase activity. In particular, T237M and V1092A mutations associated with ROSAH syndrome and spiradenoma/spiradenocarcinoma respectively, exhibit enhanced ADPH-induced kinase activity and constitutive assembly of TIFAsomes. Altogether, this study provides new insights into the ADPH sensing pathway and disease-associated ALPK1 mutants.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Fosforilação , Infecções por Helicobacter/microbiologia , Imunidade Inata , Helicobacter pylori/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Heptoses/química , Heptoses/metabolismo
3.
Gut Microbes ; 14(1): 2110639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36036242

RESUMO

The commensal bacteria that make up the gut microbiota impact the health of their host on multiple levels. In particular, the interactions taking place between the microbe-associated molecule patterns (MAMPs) and pattern recognition receptors (PRRs), expressed by intestinal epithelial cells (IECs), are crucial for maintaining intestinal homeostasis. While numerous studies showed that TLRs and NLRs are involved in the control of gut homeostasis by commensal bacteria, the role of additional innate immune receptors remains unclear. Here, we seek for novel MAMP-PRR interactions involved in the beneficial effect of the commensal bacterium Akkermansia muciniphila on intestinal homeostasis. We show that A. muciniphila strongly activates NF-κB in IECs by releasing one or more potent activating metabolites into the microenvironment. By using drugs, chemical and gene-editing tools, we found that the released metabolite(s) enter(s) epithelial cells and activate(s) NF-κB via an ALPK1, TIFA and TRAF6-dependent pathway. Furthermore, we show that the released molecule has the biological characteristics of the ALPK1 ligand ADP-heptose. Finally, we show that A. muciniphila induces the expression of the MUC2, BIRC3 and TNFAIP3 genes involved in the maintenance of the intestinal barrier function and that this process is dependent on TIFA. Altogether, our data strongly suggest that the commensal A. muciniphila promotes intestinal homeostasis by activating the ALPK1/TIFA/TRAF6 axis, an innate immune pathway exclusively described so far in the context of Gram-negative bacterial infections.


Assuntos
Microbioma Gastrointestinal , NF-kappa B , Difosfato de Adenosina , Akkermansia , Heptoses , Imunidade Inata , Fator 6 Associado a Receptor de TNF , Verrucomicrobia
4.
Cell Mol Life Sci ; 78(1): 17-29, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32591860

RESUMO

The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.


Assuntos
Heptoses/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Quinases/metabolismo , Citocinas/metabolismo , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/metabolismo , Humanos , Imunidade Inata , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , NF-kappa B/metabolismo , Transdução de Sinais
5.
Cell Microbiol ; 22(1): e13126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610608

RESUMO

The mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g., C57BL/6). However, little is known about host responses in mice exhibiting severe colitis (e.g., C3H/HeN), which arguably provide a more clinically relevant model for human paediatric enteric infection. Infection of C3H/HeN mice with C. rodentium results in rapid colonic colonisation, coinciding with induction of key inflammatory signatures and colonic crypt hyperplasia. Infection also induces dramatic changes to bioenergetics in intestinal epithelial cells, with transition from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and higher abundance of SGLT4, LDHA, and MCT4. Concomitantly, mitochondrial proteins involved in the TCA cycle and OXPHOS were in lower abundance. Similar to observations in C57BL/6 mice, we detected simultaneous activation of cholesterol biogenesis, import, and efflux. Distinctly, however, the pattern recognition receptors NLRP3 and ALPK1 were specifically induced in C3H/HeN. Using cell-based assays revealed that C. rodentium activates the ALPK1/TIFA axis, which is dependent on the ADP-heptose biosynthesis pathway but independent of the Type III secretion system. This study reveals for the first time the unfolding intestinal epithelial cells' responses during severe infectious colitis, which resemble EPEC human infections.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Interações entre Hospedeiro e Microrganismos , Inflamação/microbiologia , Mucosa Intestinal/microbiologia , Animais , Citrobacter rodentium/patogenicidade , Colite/imunologia , Colite/microbiologia , Infecções por Enterobacteriaceae/metabolismo , Feminino , Microbioma Gastrointestinal , Células HeLa , Humanos , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteômica , Organismos Livres de Patógenos Específicos
6.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455202

RESUMO

During an infection, the detection of pathogens is mediated through the interactions between pathogen-associated molecular patterns (PAMPs) and pathogen recognition receptors. ß-Heptose 1,7-bisphosphate (ßHBP), an intermediate of the lipopolysaccharide (LPS) biosynthesis pathway, was recently identified as a bacterial PAMP. It was reported that ßHBP sensing leads to oligomerization of TIFA proteins, a mechanism controlling NF-κB activation and pro-inflammatory gene expression. Here, we compare the ability of chemically synthesized ßHBP and Shigella flexneri lysate to induce TIFA oligomerization in epithelial cells. We find that, unlike bacterial lysate, ßHBP fails to initiate rapid TIFA oligomerization. It only induces delayed signaling, suggesting that ßHBP must be processed intracellularly to trigger inflammation. Gene deletion and complementation analysis of the LPS biosynthesis pathway revealed that ADP-heptose is the bacterial metabolite responsible for rapid TIFA oligomerization. ADP-heptose sensing occurs down to 10-10 M. During S. flexneri infection, it results in cytokine production, a process dependent on the kinase ALPK1. Altogether, our results rule out a major role of ßHBP in S. flexneri infection and identify ADP-heptose as a new bacterial PAMP.


Assuntos
Difosfato de Adenosina/metabolismo , Heptoses/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Shigella flexneri/metabolismo , Células HeLa , Heptoses/síntese química , Heptoses/química , Humanos , Neisseria , Proteínas Quinases/metabolismo , Multimerização Proteica , Espectroscopia de Prótons por Ressonância Magnética
7.
Cell Rep ; 19(7): 1418-1430, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514661

RESUMO

Intestinal epithelial cells (IECs) act as sentinels for incoming pathogens. Cytosol-invasive bacteria, such as Shigella flexneri, trigger a robust pro-inflammatory nuclear factor κB (NF-κB) response from IECs that is believed to depend entirely on the peptidoglycan sensor NOD1. We found that, during Shigella infection, the TRAF-interacting forkhead-associated protein A (TIFA)-dependent cytosolic surveillance pathway, which senses the bacterial metabolite heptose-1,7-bisphosphate (HBP), functions after NOD1 to detect bacteria replicating free in the host cytosol. Whereas NOD1 mediated a transient burst of NF-κB activation during bacterial entry, TIFA sensed HBP released during bacterial replication, assembling into large signaling complexes to drive a dynamic inflammatory response that reflected the rate of intracellular bacterial proliferation. Strikingly, IECs lacking TIFA were unable to discriminate between proliferating and stagnant intracellular bacteria, despite the NOD1/2 pathways being intact. Our results define TIFA as a rheostat for intracellular bacterial replication, escalating the immune response to invasive Gram-negative bacteria that exploit the host cytosol for growth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citosol/metabolismo , Imunidade Inata , Espaço Intracelular/microbiologia , Shigella flexneri/crescimento & desenvolvimento , Transdução de Sinais , Células HeLa , Humanos , Proteína Adaptadora de Sinalização NOD1/metabolismo , Fosfatos/metabolismo , Vacúolos/metabolismo
8.
PLoS Pathog ; 13(2): e1006224, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28222186

RESUMO

During infection by invasive bacteria, epithelial cells contribute to innate immunity via the local secretion of inflammatory cytokines. These are directly produced by infected cells or by uninfected bystanders via connexin-dependent cell-cell communication. However, the cellular pathways underlying this process remain largely unknown. Here we perform a genome-wide RNA interference screen and identify TIFA and TRAF6 as central players of Shigella flexneri and Salmonella typhimurium-induced interleukin-8 expression. We show that threonine 9 and the forkhead-associated domain of TIFA are necessary for the oligomerization of TIFA in both infected and bystander cells. Subsequently, this process triggers TRAF6 oligomerization and NF-κB activation. We demonstrate that TIFA/TRAF6-dependent cytokine expression is induced by the bacterial metabolite heptose-1,7-bisphosphate (HBP). In addition, we identify alpha-kinase 1 (ALPK1) as the critical kinase responsible for TIFA oligomerization and IL-8 expression in response to infection with S. flexneri and S. typhimurium but also to Neisseria meningitidis. Altogether, these results clearly show that ALPK1 is a master regulator of innate immunity against both invasive and extracellular gram-negative bacteria.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Inata/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Quimiocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/imunologia , Imunofluorescência , Bactérias Gram-Negativas/imunologia , Células HEK293 , Células HeLa , Heptoses/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Immunoblotting , Imunoprecipitação , Neisseria meningitidis/imunologia , Salmonella typhimurium/imunologia , Shigella flexneri/imunologia
10.
J Cell Biol ; 211(4): 913-31, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26598622

RESUMO

Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network.


Assuntos
Sistemas de Secreção Tipo III/farmacologia , Células 3T3 , Animais , Apoptose , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteoma/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Peixe-Zebra
11.
BMC Genomics ; 15: 1162, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25534632

RESUMO

BACKGROUND: Large-scale RNAi screening has become an important technology for identifying genes involved in biological processes of interest. However, the quality of large-scale RNAi screening is often deteriorated by off-targets effects. In order to find statistically significant effector genes for pathogen entry, we systematically analyzed entry pathways in human host cells for eight pathogens using image-based kinome-wide siRNA screens with siRNAs from three vendors. We propose a Parallel Mixed Model (PMM) approach that simultaneously analyzes several non-identical screens performed with the same RNAi libraries. RESULTS: We show that PMM gains statistical power for hit detection due to parallel screening. PMM allows incorporating siRNA weights that can be assigned according to available information on RNAi quality. Moreover, PMM is able to estimate a sharedness score that can be used to focus follow-up efforts on generic or specific gene regulators. By fitting a PMM model to our data, we found several novel hit genes for most of the pathogens studied. CONCLUSIONS: Our results show parallel RNAi screening can improve the results of individual screens. This is currently particularly interesting when large-scale parallel datasets are becoming more and more publicly available. Our comprehensive siRNA dataset provides a public, freely available resource for further statistical and biological analyses in the high-content, high-throughput siRNA screening field.


Assuntos
Genômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Linhagem Celular , Biblioteca Gênica , Genômica/normas , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Curva ROC , Reprodutibilidade dos Testes
12.
ACS Chem Biol ; 8(11): 2423-32, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23952219

RESUMO

Recognition of the lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, by the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD-2) complex is essential for the control of bacterial infection. A pro-inflammatory signaling cascade is initiated upon binding of membrane-associated portion of LPS, a glycophospholipid Lipid A, by a coreceptor protein MD-2, which results in a protective host innate immune response. However, activation of TLR4 signaling by LPS may lead to the dysregulated immune response resulting in a variety of inflammatory conditions including sepsis syndrome. Understanding of structural requirements for Lipid A endotoxicity would ensure the development of effective anti-inflammatory medications. Herein, we report on design, synthesis, and biological activities of a series of conformationally confined Lipid A mimetics based on ß,α-trehalose-type scaffold. Replacement of the flexible three-bond ß(1→6) linkage in diglucosamine backbone of Lipid A by a two-bond ß,α(1↔1) glycosidic linkage afforded novel potent TLR4 antagonists. Synthetic tetraacylated bisphosphorylated Lipid A mimetics based on a ß-GlcN(1↔1)α-GlcN scaffold selectively block the LPS binding site on both human and murine MD-2 and completely abolish lipopolysaccharide-induced pro-inflammatory signaling, thereby serving as antisepsis drug candidates. In contrast to their natural counterpart lipid IVa, conformationally constrained Lipid A mimetics do not activate mouse TLR4. The structural basis for high antagonistic activity of novel Lipid A mimetics was confirmed by molecular dynamics simulation. Our findings suggest that besides the chemical structure, also the three-dimensional arrangement of the diglucosamine backbone of MD-2-bound Lipid A determines endotoxic effects on TLR4.


Assuntos
Biomimética , Lipídeo A/química , Modelos Biológicos , Peptídeos/química , Receptor 4 Toll-Like/química , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Escherichia coli/química , Células HEK293 , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Conformação Molecular , Peptídeos/antagonistas & inibidores , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/antagonistas & inibidores
13.
Mol Cell Proteomics ; 12(10): 2952-68, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828894

RESUMO

The enteroinvasive bacterium Shigella flexneri invades the intestinal epithelium of humans. During infection, several injected effector proteins promote bacterial internalization, and interfere with multiple host cell responses. To obtain a systems-level overview of host signaling during infection, we analyzed the global dynamics of protein phosphorylation by liquid chromatography-tandem MS and identified several hundred of proteins undergoing a phosphorylation change during the first hours of infection. Functional bioinformatic analysis revealed that they were mostly related to the cytoskeleton, transcription, signal transduction, and cell cycle. Fuzzy c-means clustering identified six temporal profiles of phosphorylation and a functional module composed of ATM-phosphorylated proteins related to genotoxic stress. Pathway enrichment analysis defined mTOR as the most overrepresented pathway. We showed that mTOR complex 1 and 2 were required for S6 kinase and AKT activation, respectively. Comparison with a published phosphoproteome of Salmonella typhimurium-infected cells revealed a large subset of coregulated phosphoproteins. Finally, we showed that S. flexneri effector OspF affected the phosphorylation of several hundred proteins, thereby demonstrating the wide-reaching impact of a single bacterial effector on the host signaling network.


Assuntos
Disenteria Bacilar/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Fosfoproteínas/metabolismo , Shigella flexneri/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Células HeLa , Humanos , Camundongos , Fosforilação , Proteômica/métodos , Salmonella typhi/metabolismo
14.
PLoS One ; 6(2): e17158, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21364927

RESUMO

BACKGROUND: Nuclear factor-κB (NF-κB) is a transcription factor that regulates the transcription of genes involved in a variety of biological processes, including innate and adaptive immunity, stress responses and cell proliferation. Constitutive or excessive NF-κB activity has been associated with inflammatory disorders and higher risk of cancer. In contrast to the mechanisms controlling inducible activation, the regulation of basal NF-κB activation is not well understood. Here we test whether clathrin heavy chain (CHC) contributes to the regulation of basal NF-κB activity in epithelial cells. METHODOLOGY: Using RNA interference to reduce endogenous CHC expression, we found that CHC is required to prevent constitutive activation of NF-κB and gene expression. Immunofluorescence staining showed constitutive nuclear localization of the NF-κB subunit p65 in absence of stimulation after CHC knockdown. Elevated basal p65 nuclear localization is caused by constitutive phosphorylation and degradation of inhibitor of NF-κB alpha (IκBα) through an IκB kinase α (IKKα)-dependent mechanism. The role of CHC in NF-κB signaling is functionally relevant as constitutive expression of the proinflammatory chemokine interleukin-8 (IL-8), whose expression is regulated by NF-κB, was found after CHC knockdown. Disruption of clathrin-mediated endocytosis by chemical inhibition or depletion of the µ2-subunit of the endocytosis adaptor protein AP-2, and knockdown of clathrin light chain a (CHLa), failed to induce constitutive NF-κB activation and IL-8 expression, showing that CHC acts on NF-κB independently of endocytosis and CLCa. CONCLUSIONS: We conclude that CHC functions as a built-in molecular brake that ensures a tight control of basal NF-κB activation and gene expression in unstimulated cells. Furthermore, our data suggest a potential link between a defect in CHC expression and chronic inflammation disorder and cancer.


Assuntos
Cadeias Pesadas de Clatrina/metabolismo , Cadeias Pesadas de Clatrina/fisiologia , Endocitose/fisiologia , NF-kappa B/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/fisiologia , Interleucina-8/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células Tumorais Cultivadas
15.
Cell Signal ; 23(7): 1188-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21402152

RESUMO

Shigella flexneri type III secreted effector OspF harbors a phosphothreonine lyase activity that irreversibly dephosphorylates MAP kinases (MAPKs) p38 and ERK in infected epithelial cells and thereby, dampens innate immunity. Whereas this activity has been well characterized, the impact of OspF on other host signaling pathways that control inflammation was unknown. Here we report that OspF potentiates the activation of the MAPK JNK and the transcription factor NF-κB during S. flexneri infection. This unexpected effect of OspF was dependent on the phosphothreonine lyase activity of OspF on p38, and resulted from the disruption of a negative feedback loop regulation between p38 and TGF-beta activated kinase 1 (TAK1), mediated via the phosphorylation of TAK1-binding protein 1. Interestingly, potentiated JNK activation was not associated with enhanced c-Jun signaling as OspF also inhibits c-Jun expression at the transcriptional level. Altogether, our data reveal the impact of OspF on the activation of NF-κB, JNK and c-Jun, and demonstrate the existence of a negative feedback loop regulation between p38 and TAK1 during S. flexneri infection. Furthermore, this study validates the use of bacterial effectors as molecular tools to identify the crosstalks that connect important host signaling pathways induced upon bacterial infection.


Assuntos
Proteínas de Bactérias/metabolismo , Disenteria Bacilar/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas Recombinantes/metabolismo , Shigella flexneri , Animais , Linhagem Celular , Disenteria Bacilar/imunologia , Ativação Enzimática , Retroalimentação Fisiológica , Humanos , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Fosforilases/metabolismo , Fosforilação , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Immunity ; 33(5): 804-16, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21093316

RESUMO

The enteroinvasive bacterium Shigella flexneri uses multiple secreted effector proteins to downregulate interleukin-8 (IL-8) expression in infected epithelial cells. Yet, massive IL-8 secretion is observed in Shigellosis. Here we report a host mechanism of cell-cell communication that circumvents the effector proteins and strongly amplifies IL-8 expression during bacterial infection. By monitoring proinflammatory signals at the single-cell level, we found that the activation of the transcription factor NF-κB and the MAP kinases JNK, ERK, and p38 rapidly propagated from infected to uninfected adjacent cells, leading to IL-8 production by uninfected bystander cells. Bystander IL-8 production was also observed during Listeria monocytogenes and Salmonella typhimurium infection. This response could be triggered by recognition of peptidoglycan and is mediated by gap junctions. Thus, we have identified a mechanism of cell-cell communication that amplifies innate immunity against bacterial infection by rapidly spreading proinflammatory signals via gap junctions to yet uninfected cells.


Assuntos
Disenteria Bacilar/imunologia , Imunidade Inata , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Shigella flexneri/imunologia , Células CACO-2 , Comunicação Celular/imunologia , Proliferação de Células , Disenteria Bacilar/enzimologia , Junções Comunicantes/imunologia , Junções Comunicantes/microbiologia , Células HeLa , Humanos , Interleucina-8/análise , Interleucina-8/imunologia , Listeria monocytogenes/imunologia , Listeriose/enzimologia , Listeriose/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Peptidoglicano/imunologia , Shigella flexneri/enzimologia
17.
PLoS One ; 5(10): e15371, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20976174

RESUMO

BACKGROUND: During pathogen infection, innate immunity is initiated via the recognition of microbial products by pattern recognition receptors and the subsequent activation of transcription factors that upregulate proinflammatory genes. By controlling the expression of cytokines, chemokines, anti-bacterial peptides and adhesion molecules, the transcription factor nuclear factor-kappa B (NF-κB) has a central function in this process. In a typical model of NF-κB activation, the recognition of pathogen associated molecules triggers the canonical NF-κB pathway that depends on the phosphorylation of Inhibitor of NF-κB (IκB) by the catalytic subunit IκB kinase ß (IKKß), its degradation and the nuclear translocation of NF-κB dimers. METHODOLOGY: Here, we performed an RNA interference (RNAi) screen on Shigella flexneri-induced NF-κB activation to identify new factors involved in the regulation of NF-κB following infection of epithelial cells by invasive bacteria. By targeting a subset of the human signaling proteome, we found that the catalytic subunit IKKα is also required for complete NF-κB activation during infection. Depletion of IKKα by RNAi strongly reduces the nuclear translocation of NF-κB p65 during S. flexneri infection as well as the expression of the proinflammatory chemokine interleukin-8. Similar to IKKß, IKKα contributes to the phosphorylation of IκBα on serines 32 and 36, and to its degradation. Experiments performed with the synthetic Nod1 ligand L-Ala-D-γ-Glu-meso-diaminopimelic acid confirmed that IKKα is involved in NF-κB activation triggered downstream of Nod1-mediated peptidoglycan recognition. CONCLUSIONS: Taken together, these results demonstrate the unexpected role of IKKα in the canonical NF-κB pathway triggered by peptidoglycan recognition during bacterial infection. In addition, they suggest that IKKα may be an important drug target for the development of treatments that aim at limiting inflammation in bacterial infection.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Peptidoglicano/metabolismo , Sequência de Bases , Western Blotting , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Células HeLa , Humanos , Interferência de RNA
18.
PLoS Pathog ; 6(3): e1000804, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20300602

RESUMO

During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important player in P. aeruginosa persistence, and implicates a central role for c-di-GMP, and by extension the SCV phenotype in chronic infections.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , GMP Cíclico/análogos & derivados , Proteínas Periplásmicas/genética , Fósforo-Oxigênio Liases/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Caenorhabditis elegans , Células Cultivadas , GMP Cíclico/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Escherichia coli , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese/fisiologia , Óperon/genética , Proteínas Periplásmicas/metabolismo , Fagocitose/fisiologia , Fenótipo , Fósforo-Oxigênio Liases/metabolismo , Pneumonia Bacteriana/enzimologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/enzimologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Sistemas do Segundo Mensageiro/fisiologia
19.
Cell Metab ; 8(1): 26-37, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18590690

RESUMO

Cyclic AMP (cAMP) and Ca(2+) are key regulators of exocytosis in many cells, including insulin-secreting beta cells. Glucose-stimulated insulin secretion from beta cells is pulsatile and involves oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse beta cells. These oscillations were preceded and enhanced by elevations of [Ca(2+)](i). However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca(2+)](i) rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.


Assuntos
AMP Cíclico/fisiologia , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Cálcio , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Exocitose , Secreção de Insulina , Cinética , Camundongos , Microscopia de Fluorescência , Sistemas do Segundo Mensageiro
20.
PLoS One ; 2(11): e1217, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18030348

RESUMO

TOR (Target of Rapamycin) is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) based proteomic strategy to identify new mammalian TOR (mTOR) binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40) and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP) and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFalpha and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5) and was therefore named PRR5-Like (PRR5L). PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1) and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/fisiologia , Fosfoproteínas/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida/métodos , Cicloeximida/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Proteínas , Interferência de RNA , Serina-Treonina Quinases TOR , Espectrometria de Massas em Tandem , Fatores de Transcrição/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA