Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Immunol ; 127: 95-106, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949849

RESUMO

Leishmania infantum infection may cause visceral leishmaniasis (VL), a fatal disease having worldwide distribution, that may be silent or asymptomatic. The latter indicates that immunity is naturally developed in some individuals, and, therefore, a vaccine against VL would be possible. Molecular mechanisms of gene expression are being understood in Leishmania, and this knowledge may be useful for vaccine development. The aim of this study was developing an attenuated strain by regulating the expression of toxic proteins in a stage specific manner. For that purpose, the 3' UTR of an amastin gene, known by its increased expression in the amastigote phase, was selected for direct the expression of exogenous proteins. This construct (pFL-AMA), firstly, was proved effective for the expression of mCherry specifically in the intracellular form of L. infantum, as demonstrated by fluorescence microscopy, flow cytometry and Western blotting. Afterwards, mCherry coding sequence was replaced, in the pFL-AMA plasmid, by either egg avidin or the active form of bovine trypsin. Viability of transfected parasites was evaluated in promastigote axenic cultures and in in vitro infection of macrophages. Both lines of transfected parasites showed a limited capacity to multiply inside macrophages. BALB/c mice were inoculated intraperitoneally (i.p.) with a single dose consisting of 2 × 106L. infantum promastigotes transfected with plasmids bearing the toxic genes. After 10 weeks post-inoculation, no parasites were recovered by limiting dilution in either liver or spleen, but a specific immunological response was detected. The immunization with transfected parasites induced cellular and humoral immune responses with activation of TCD4+, TCD8+ and B cells, having a TH1-type response with increased levels of pro-inflammatory cytokines such as IFN-γ, TNF-α and IL-6. In parallel groups of mice, a challenge consisting on 1 × 106 virulent parasites of either L. infantum (inoculated i.p.) or L. amazonensis subcutaneously (s.c.) was performed. Vaccinated mice, challenged with L. infantum, showed lower parasite burdens in liver, spleen and bone marrow than infected mice with WT L. infantum (non-vaccinated); similarly, vaccinated mice developed smaller footpad inflammation than control group. These data support this strategy as an efficient immunization system aimed to the development of vaccines against different forms of leishmaniasis.


Assuntos
Leishmania infantum/fisiologia , Leishmania/fisiologia , Leishmaniose/prevenção & controle , Leishmaniose/parasitologia , Plasmídeos/metabolismo , Toxinas Biológicas/metabolismo , Transfecção , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Celular , Imunidade Humoral , Imunização , Leishmania/patogenicidade , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/patogenicidade , Leishmaniose/imunologia , Estágios do Ciclo de Vida , Camundongos Endogâmicos BALB C , Parasitos/metabolismo , Parasitos/patogenicidade , Proteínas de Protozoários/metabolismo , Virulência
2.
Int J Nanomedicine ; 9: 877-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24627630

RESUMO

The study reported here aimed to develop an optimized nanoparticle delivery system for amphotericin B (AmpB) using a polyelectrolyte complexation technique. For this, two oppositely charged polymers presenting anti-leishmanial activity - chitosan (Cs) and chondroitin sulfate (ChS) - were used: Cs as a positively charged polymer and ChS as a negatively charged polymer. The chitosan (NQ) nanoparticles, chitosan-chondroitin sulfate (NQC) nanoparticles, and chitosan-chondroitin sulfate-amphotericin B (NQC-AmpB) nanoparticles presented a mean particle size of 79, 104, and 136 nm, respectively; and a polydispersity index of 0.2. The measured zeta potential of the nanoparticles indicated a positive charge in their surface, while scanning and transmission electron microscopy revealed spherical nanoparticles with a smooth surface. Attenuated total reflectance-Fourier transform infrared spectroscopy analysis showed an electrostatic interaction between the polymers, whereas the release profile of AmpB from the NQC-AmpB nanoparticles showed a controlled release. In addition, the Cs; ChS; and NQ, NQC, and NQC-AmpB nanoparticles proved to be effective against promastigotes of Leishmania amazonensis and Leishmania chagasi, with a synergistic effect observed between Cs and ChS. Moreover, the applied NQ, NQC, and NQC-AmpB compounds demonstrated low toxicity in murine macrophages, as well as null hemolytic activity in type O(+) human red blood cells. Pure AmpB demonstrated high toxicity in the macrophages. The results show that cells infected with L. amazonensis and later treated with Cs, ChS, NQ, NQC, NQC-AmpB nanoparticles, or pure AmpB presented with a significant reduction in parasite number in the order of 24%, 31%, 55%, 66%, 90%, and 89%, respectively. The data presented indicate that the engineered NQC-AmpB nanoparticles could potentially be used as an alternative therapy to treat leishmaniasis, mainly due its low toxicity to mammals' cells.


Assuntos
Anfotericina B/administração & dosagem , Sistemas de Liberação de Medicamentos , Leishmaniose/tratamento farmacológico , Nanopartículas/administração & dosagem , Tripanossomicidas/administração & dosagem , Animais , Química Farmacêutica , Quitosana/química , Sulfatos de Condroitina/química , Feminino , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Nanopartículas/química , Nanopartículas/ultraestrutura
3.
PLoS Negl Trop Dis ; 6(6): e1687, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22724032

RESUMO

BACKGROUND: Protection and recovery from visceral leishmaniasis (VL) have been associated with cell-mediated immune (CMI) responses, whereas no protective role has been attributed to humoral responses against specific parasitic antigens. In this report, we compared carefully selected groups of individuals with distinct responses to Leishmania chagasi to explore antigen-recognizing IgG present in resistant individuals. METHODOLOGY AND PRINCIPAL FINDINGS: VL patients with negative delayed-type hypersensitivity (DTH) were classified into the susceptible group. Individuals who had recovered from VL and converted to a DTH+ response, as well as asymptomatic infected individuals (DTH+), were categorized into the resistant group. Sera from these groups were used to detect antigens from L. chagasi by conventional and 2D Western blot assays. Despite an overall reduction in the reactivity of several proteins after DTH conversion, a specific group of proteins (approximately 110-130 kDa) consistently reacted with sera from DTH converters. Other antigens that specifically reacted with sera from DTH+ individuals were isolated and tandem mass spectrometry followed by database query with the protein search engine MASCO were used to identify antigens. The serological properties of recombinant version of the selected antigens were tested by ELISA. Sera from asymptomatic infected people (DTH+) reacted more strongly with a mixture of selected recombinant antigens than with total soluble Leishmania antigen (SLA), with less cross-reactivity against Chagas disease patients' sera. SIGNIFICANCE: Our results are the first evidence of leishmania proteins that are specifically recognized by sera from individuals who are putatively resistant to VL. In addition, these data highlight the possibility of using specific proteins in serological tests for the identification of asymptomatic infected individuals.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos Imunodominantes/imunologia , Leishmania/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/prevenção & controle , Adolescente , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/química , Western Blotting , Criança , Pré-Escolar , Biologia Computacional , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Epitopos Imunodominantes/química , Imunoglobulina G/sangue , Lactente , Leishmania/química , Masculino , Peso Molecular , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA