Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684038

RESUMO

The T-box transcription factor T-bet is known as a master regulator of T-cell response but its role in malignant B cells is not sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with genetic knockout of TBX21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity induced by inflammatory signals provided by the microenvironment, triggered T-bet expression which impacted on promoter proximal and distal chromatin co-accessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling, and a negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of CLL patients. Our study uncovers a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling which has implications for stratification and therapy of CLL patients. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in inflammatory signaling pathways in CLL.

2.
FEBS Lett ; 597(11): 1443-1446, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37211530

RESUMO

Despite great progress in recent years, gender equity in science is still missing. Women are underrepresented in senior/leadership positions and struggle to be funded and awarded. Social norms, gender bias, stereotypes in education, and lack of support for the family are just some of the issues that need to be addressed to revert this trend. Historically, many women have been overshadowed by their men colleagues. Although it is hard to give the deserved credit to all women who went unnoticed for centuries, it is time to properly recognize the growing number of them who succeded in science despite the challenges. These women can inspire many more who intend to make of science their future.


Assuntos
Liderança , Sexismo , Humanos , Masculino , Feminino
3.
Nucleic Acids Res ; 51(2): 687-711, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629267

RESUMO

The DNA damage response (DDR) is essential to maintain genome stability, and its deregulation predisposes to carcinogenesis while encompassing attractive targets for cancer therapy. Chromatin governs the DDR via the concerted interplay among different layers, including DNA, histone post-translational modifications (hPTMs) and chromatin-associated proteins. Here, we employ multi-layered proteomics to characterize chromatin-mediated functional interactions of repair proteins, signatures of hPTMs and the DNA-bound proteome during DNA double-strand break (DSB) repair at high temporal resolution. Our data illuminate the dynamics of known and novel DDR-associated factors both at chromatin and at DSBs. We functionally attribute novel chromatin-associated proteins to repair by non-homologous end-joining (NHEJ), homologous recombination (HR) and DSB repair pathway choice. We reveal histone reader ATAD2, microtubule organizer TPX2 and histone methyltransferase G9A as regulators of HR and involved in poly-ADP-ribose polymerase-inhibitor sensitivity. Furthermore, we distinguish hPTMs that are globally induced by DNA damage from those specifically acquired at sites flanking DSBs (γH2AX foci-specific) and profiled their dynamics during the DDR. Integration of complementary chromatin layers implicates G9A-mediated monomethylation of H3K56 in DSBs repair via HR. Our data provide a dynamic chromatin-centered view of the DDR that can be further mined to identify novel mechanistic links and cell vulnerabilities in DSB repair.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/metabolismo , Proteômica , Reparo do DNA , Reparo do DNA por Junção de Extremidades , DNA , Reparo de DNA por Recombinação
4.
Cancers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672428

RESUMO

Glioblastoma is the most aggressive brain tumor in adults. Treatment failure is predominantly caused by its high invasiveness and its ability to induce a supportive microenvironment. As part of this, a major role for tumor-associated macrophages/microglia (TAMs) in glioblastoma development was recognized. Phospholipids are important players in various fundamental biological processes, including tumor-stroma crosstalk, and the bioactive lipid sphingosine-1-phosphate (S1P) has been linked to glioblastoma cell proliferation, invasion, and survival. Despite the urgent need for better therapeutic approaches, novel strategies targeting sphingolipids in glioblastoma are still poorly explored. Here, we showed that higher amounts of S1P secreted by glioma cells are responsible for an active recruitment of TAMs, mediated by S1P receptor (S1PR) signaling through the modulation of Rac1/RhoA. This resulted in increased infiltration of TAMs in the tumor, which, in turn, triggered their pro-tumorigenic phenotype through the inhibition of NFkB-mediated inflammation. Gene set enrichment analyses showed that such an anti-inflammatory microenvironment correlated with shorter survival of glioblastoma patients. Inhibition of S1P restored a pro-inflammatory phenotype in TAMs and resulted in increased survival of tumor-bearing mice. Taken together, our results establish a crucial role for S1P in fine-tuning the crosstalk between glioma and infiltrating TAMs, thus pointing to the S1P-S1PR axis as an attractive target for glioma treatment.

5.
Leukemia ; 36(2): 464-475, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34417556

RESUMO

Chronic lymphocytic leukemia (CLL) is a B-cell malignancy mainly occurring at an advanced age with no single major genetic driver. Transgenic expression of TCL1 in B cells leads after a long latency to a CLL-like disease in aged Eµ-TCL1 mice suggesting that TCL1 overexpression is not sufficient for full leukemic transformation. In search for secondary genetic events and to elucidate the clonal evolution of CLL, we performed whole exome and B-cell receptor sequencing of longitudinal leukemia samples of Eµ-TCL1 mice. We observed a B-cell receptor stereotypy, as described in patients, confirming that CLL is an antigen-driven disease. Deep sequencing showed that leukemia in Eµ-TCL1 mice is mostly monoclonal. Rare oligoclonality was associated with inability of tumors to develop disease upon adoptive transfer in mice. In addition, we identified clonal changes and a sequential acquisition of mutations with known relevance in CLL, which highlights the genetic similarities and therefore, suitability of the Eµ-TCL1 mouse model for progressive CLL. Among them, a recurrent gain of chromosome 15, where Myc is located, was identified in almost all tumors in Eµ-TCL1 mice. Interestingly, amplification of 8q24, the chromosomal region containing MYC in humans, was associated with worse outcome of patients with CLL.


Assuntos
Evolução Clonal , Mutação com Ganho de Função , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Cromossomos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética
6.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155103

RESUMO

The cancer-free photosensitive trichothiodystrophy (PS-TTD) and the cancer-prone xeroderma pigmentosum (XP) are rare monogenic disorders that can arise from mutations in the same genes, namely ERCC2/XPD or ERCC3/XPB Both XPD and XPB proteins belong to the 10-subunit complex transcription factor IIH (TFIIH) that plays a key role in transcription and nucleotide excision repair, the DNA repair pathway devoted to the removal of ultraviolet-induced DNA lesions. Compelling evidence suggests that mutations affecting the DNA repair activity of TFIIH are responsible for the pathological features of XP, whereas those also impairing transcription give rise to TTD. By adopting a relatives-based whole transcriptome sequencing approach followed by specific gene expression profiling in primary fibroblasts from a large cohort of TTD or XP cases with mutations in ERCC2/XPD gene, we identify the expression alterations specific for TTD primary dermal fibroblasts. While most of these transcription deregulations do not impact on the protein level, very low amounts of prostaglandin I2 synthase (PTGIS) are found in TTD cells. PTGIS catalyzes the last step of prostaglandin I2 synthesis, a potent vasodilator and inhibitor of platelet aggregation. Its reduction characterizes all TTD cases so far investigated, both the PS-TTD with mutations in TFIIH coding genes as well as the nonphotosensitive (NPS)-TTD. A severe impairment of TFIIH and RNA polymerase II recruitment on the PTGIS promoter is found in TTD but not in XP cells. Thus, PTGIS represents a biomarker that combines all PS- and NPS-TTD cases and distinguishes them from XP.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias/patologia , Síndromes de Tricotiodistrofia/enzimologia , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Epoprostenol , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Pele/patologia , Transcrição Gênica , Síndromes de Tricotiodistrofia/genética , Raios Ultravioleta , Xeroderma Pigmentoso/genética
7.
Leukemia ; 35(8): 2311-2324, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33526861

RESUMO

The transcription factor eomesodermin (EOMES) promotes interleukin (IL)-10 expression in CD4+ T cells, which has been linked to immunosuppressive and cytotoxic activities. We detected cytotoxic, programmed cell death protein-1 (PD-1) and EOMES co-expressing CD4+ T cells in lymph nodes (LNs) of patients with chronic lymphocytic leukemia (CLL) or diffuse large B-cell lymphoma. Transcriptome and flow cytometry analyses revealed that EOMES does not only drive IL-10 expression, but rather controls a unique transcriptional signature in CD4+ T cells, that is enriched in genes typical for T regulatory type 1 (TR1) cells. The TR1 cell identity of these CD4+ T cells was supported by their expression of interferon gamma and IL-10, as well as inhibitory receptors including PD-1. TR1 cells with cytotoxic capacity accumulate also in Eµ-TCL1 mice that develop CLL-like disease. Whereas wild-type CD4+ T cells control TCL1 leukemia development after adoptive transfer in leukopenic Rag2-/- mice, EOMES-deficient CD4+ T cells failed to do so. We further show that TR1 cell-mediated control of TCL1 leukemia requires IL-10 receptor (IL-10R) signaling, as Il10rb-deficient CD4+ T cells showed impaired antileukemia activity. Altogether, our data demonstrate that EOMES is indispensable for the development of IL-10-expressing, cytotoxic TR1 cells, which accumulate in LNs of CLL patients and control TCL1 leukemia in mice in an IL-10R-dependent manner.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-10/metabolismo , Leucemia Linfocítica Crônica de Células B/prevenção & controle , Proteínas com Domínio T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Interferon gama , Interleucina-10/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Transdução de Sinais , Proteínas com Domínio T/genética , Transcriptoma , Células Tumorais Cultivadas
8.
Int J Mol Sci ; 19(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738498

RESUMO

The extracellular matrix (ECM) is a highly dynamic and heterogeneous structure that plays multiple roles in living organisms. Its integrity and homeostasis are crucial for normal tissue development and organ physiology. Loss or alteration of ECM components turns towards a disease outcome. In this review, we provide a general overview of ECM components with a special focus on collagens, the most abundant and diverse ECM molecules. We discuss the different functions of the ECM including its impact on cell proliferation, migration and differentiation by highlighting the relevance of the bidirectional cross-talk between the matrix and surrounding cells. By systematically reviewing all the hereditary disorders associated to altered collagen structure or resulting in excessive collagen degradation, we point to the functional relevance of the collagen and therefore of the ECM elements for human health. Moreover, the large overlapping spectrum of clinical features of the collagen-related disorders makes in some cases the patient clinical diagnosis very difficult. A better understanding of ECM complexity and molecular mechanisms regulating the expression and functions of the various ECM elements will be fundamental to fully recognize the different clinical entities.


Assuntos
Colágeno/genética , Proteínas da Matriz Extracelular/genética , Matriz Extracelular/genética , Doenças Genéticas Inatas , Movimento Celular/genética , Proliferação de Células/genética , Colágeno/química , Matriz Extracelular/química , Proteínas da Matriz Extracelular/química , Doenças Genéticas Inatas/patologia , Humanos , Fenótipo , Relação Estrutura-Atividade
9.
Proc Natl Acad Sci U S A ; 112(5): 1499-504, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605938

RESUMO

Mutations in the XPD subunit of the DNA repair/transcription factor TFIIH result in distinct clinical entities, including the cancer-prone xeroderma pigmentosum (XP) and the multisystem disorder trichothiodystrophy (TTD), which share only cutaneous photosensitivity. Gene-expression profiles of primary dermal fibroblasts revealed overexpression of matrix metalloproteinase 1 (MMP-1), the gene encoding the metalloproteinase that degrades the interstitial collagens of the extracellular matrix (ECM), in TTD patients mutated in XPD compared with their healthy parents. The defect is observed in TTD and not in XP and is specific for fibroblasts, which are the main producers of dermal ECM. MMP-1 transcriptional up-regulation in TTD is caused by an erroneous signaling mediated by retinoic acid receptors on the MMP-1 promoter and leads to hypersecretion of active MMP-1 enzyme and degradation of collagen type I in the ECM of cell/tissue systems and TTD patient skin. In agreement with the well-known role of ECM in eliciting signaling events controlling cell behavior and tissue homeostasis, ECM alterations in TTD were shown to impact on the migration and wound-healing properties of patient dermal fibroblasts. The presence of a specific inhibitor of MMP activity was sufficient to restore normal cell migration, thus providing a potential approach for therapeutic strategies. This study highlights the relevance of ECM anomalies in TTD pathogenesis and in the phenotypic differences between TTD and XP.


Assuntos
Matriz Extracelular/patologia , Metaloproteinase 1 da Matriz/metabolismo , Fator de Transcrição TFIIH/fisiologia , Síndromes de Tricotiodistrofia/enzimologia , Humanos , Metaloproteinase 1 da Matriz/genética , Regiões Promotoras Genéticas , Receptores do Ácido Retinoico/metabolismo , Síndromes de Tricotiodistrofia/patologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA