Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Foods ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928880

RESUMO

Fruits and vegetables make up a significant section of the food supply chain and are essential for optimum health and nutrition worldwide [...].

2.
Foods ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790742

RESUMO

The objective of this work was to gain insight into the operating conditions that affect the efficiency of ultrasound-assisted extraction (UAE) parameters to achieve the best recovery of bioactive compounds from broccoli leaf and floret byproducts. Therefore, total phenolic content (TPC) and the main sulfur bioactive compounds (sulforaphane (SFN) and glucosinolates (GLSs)) were assayed. Distilled water was used as solvent. For each byproduct type, solid/liquid ratio (1:25 and 2:25 g/mL), temperature (25, 40, and 55 °C), and extraction time (2.5, 5, 7.5, 10, 15, and 20 min) were the studied variables to optimize the UAE process by using a kinetic and a cubic regression model. TPC was 12.5-fold higher in broccoli leaves than in florets, while SFN was from 2.5- to 4.5-fold higher in florets regarding the leaf's extracts obtained from the same plants, their precursors (GLS) being in similar amounts for both plant tissues. The most efficient extraction conditions were at 25 °C, ratio 2:25, and during 15 or 20 min according to the target phytochemical to extract. In conclusion, the type of plant tissue and used ratio significantly influenced the extraction of bioactive compounds, the most efficient UAE parameters being those with lower energy consumption.

3.
Foods ; 12(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137260

RESUMO

Response Surface Methodology (RSM) is a widely used mathematical tool for process optimization, setting their main factorial variables. The current research analyzes and summarizes the current knowledge about the RSM in the extraction of carotenoids from fruit and vegetable by-products, following a systematic review protocol (Prisma 2020 Statement). After an identification of manuscripts in Web of Science (September 2023) using inclusion search terms ("carotenoids", "extraction", "response-surface methodology", "ultrasound", "microwave" and "enzyme"), they were screened by titles and abstracts. Finally, 29 manuscripts were selected according to the PRISMA methodology (an evidence-based minimum set of items for reporting in systematic reviews), then, 16 questions related to the quality criteria developed by authors were applied. All studies were classified as having an acceptable level of quality criteria (≤50% "yes answers"), with four of them reaching a moderate level (>50 to ≤70% "yes answers"). No studies were cataloged as complete (>70% "yes answers"). Most studies are mainly focused on ultrasound-assisted extraction, which has been widely developed compared to microwave or enzymatic-assisted extractions. Most evidence shows that it is important to provide information when RSM is applied, such as the rationale for selecting a particular design, the specification of input variables and their potential levels, a discussion on the statistical model's validity, and an explanation of the optimization procedure. In addition, the principles of open science, specifically data availability, should be included in future scientific manuscripts related to RSM and revalorization.

4.
Foods ; 12(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37835340

RESUMO

This systematic review seeks to highlight, from the published literature about the extraction and application of lemon by-products rich in flavonoids, which works use environmentally friendly technologies and solvents and which ones propose a potentially functional food application, according to the Sustainable Development Goals (SDGs). WoS and SCOPUS were used as scientific databases for searching the documents, which were evaluated through 10 quality questions according to their adherence to our purpose (5 questions evaluating papers devoted to lemon flavonoid extraction and 5 concerning the application of such by-products in new foods). Each question was evaluated as "Yes", "No", or "does Not refer", according to its adherence to our aim. The analysis reported 39 manuscripts related to lemon flavonoid extraction; 89% of them used green technologies and solvents. On the other hand, 18 manuscripts were related to the incorporation of lemon by-products into new foods, of which 41% adhered to our purpose and only 35% evaluated the functionality of such incorporation. Conclusively, although the bibliography is extensive, there are still some gaps for further investigation concerning the extraction and application of lemon by-products to reduce food losses in an environmentally friendly way and the possible development of new functional foods, which must be performed following the SDGs.

5.
Plants (Basel) ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836143

RESUMO

Essential oils (EOs) extracted from plants have a high potential to reduce ethylene biosynthesis, although their effects have not been deeply studied yet on the key components of the ethylene biosynthesis pathway: l-aminocyclopropane-1-carboxylic (ACC) oxidase activity, ACC synthase activity, and ACC content. Hence, the present study aimed to elucidate the effects of released EOs from active packaging (with different EO doses ranging from 100 to 1000 mg m-2) on the ethylene biosynthesis key components of broccoli and tomato under different storage temperature scenarios. The largest ethylene inhibitory effects on broccoli and tomatoes were demonstrated by grapefruit EO and thyme essential EO (up to 63%), respectively, which were more pronounced at higher temperatures. Regarding EO doses, active packaging with a thyme EO dose of 1000 mg m-2 resulted in the strongest reduction (33-38%) of ethylene production in tomatoes. For broccoli, identical results were shown with a lower grapefruit EO dose of 500 mg m-2. The studied EO-active packaging decreased ACC synthase and ACC oxidase activities by 40-50% at 22 °C. Therefore, this EO-active packaging is a natural and effective technology to reduce ethylene biosynthesis in broccoli and tomatoes when they are stored, even in unsuitable scenarios at high temperatures.

6.
Foods ; 12(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37893701

RESUMO

Vegetable beverages are a convenient strategy to enhance the consumption of horticultural commodities, with the possibility of being fortified with plant by-products to increase functional quality. The main objective was to develop a new veggie beverage from broccoli stalks and carrot by-products seasoned with natural antioxidants and antimicrobial ingredients. Pasteurization, Ultrasound (US), and High Hydrostatic Pressure (HHP) and their combinations were used as processing treatments, while no treatment was used as a control (CTRL). A shelf-life study of 28 days at 4 °C was assayed. Microbial load, antioxidant capacity, and bioactive compounds were periodically measured. Non-thermal treatments have successfully preserved antioxidants (~6 mg/L ΣCarotenoids) and sulfur compounds (~1.25 g/L ΣGlucosinolates and ~5.5 mg/L sulforaphane) throughout the refrigerated storage, with a longer shelf life compared to a pasteurized beverage. Total vial count was reduced by 1.5-2 log CFU/mL at day 0 and by 6 log CFU/mL at the end of the storage in HHP treatments. Thus, the product developed in this study could help increase the daily intake of glucosinolates and carotenoids. These beverages can be a good strategy to revitalize broccoli and carrot by-products with high nutritional potential while maintaining a pleasant sensory perception for the final consumer.

7.
Sci Total Environ ; 872: 162169, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775153

RESUMO

Due to the growing awareness about the environmental and economic sustainability of food products, the present research aims to evaluate the sustainability of fresh-cut and pre-cooked vegetables, a niche market with growing demand. An analysis was carried out using a detailed material, energy, and economic inventory based on a commercial food processing plant located in northeast Spain. The environmental sustainability was determined using process-based environmental life cycle assessment (E-LCA), applying a cradle-to-market approach, and using the EF3.0 impact assessment methodology to quantify impacts on five midpoint categories (climate change, photochemical ozone formation, acidification, freshwater eutrophication, and fossil resource use) and an aggregated single score. Additionally, an environmental life cycle costing (E-LCC) was performed. The pre-cooked vegetable products showed a higher environmental footprint than the fresh-cut products in all the impact categories (between 14.0 % and 39.9 %) and involved higher life cycle costs (15.2 %), due to the increased demand for ingredients, packaging materials, and electricity consumption per FU (kg of product). The carbon footprint (CF) and the cost for the fresh-cut products were 0.72 kg CO2 eq/kg and 2.62 €/kg, respectively, compared to 0.86 kg CO2/kg and 3.02 €/kg for the pre-cooked vegetables. The environmental profiles of both products were rather similar, with a dominance of the Upstream stage (production of ingredients and packaging materials), followed by the Core stage (mainly due to electricity consumed during vegetable processing). The relevance of the Core stage is amplified in the economic analysis due to the incorporation of certain processes which were not included in the process-based E-LCA (e.g., labour, capital, insurance, maintenance costs, etc.). To integrate the economic and environmental analyses, an eco-efficiency index was calculated that describes the carbon emissions per unit of monetary cost, resulting in 0.27 kg CO2eq/€ for the fresh-cut and 0.28 kg CO2 eq/€ for the pre-cooked vegetables.


Assuntos
Dióxido de Carbono , Verduras , Pegada de Carbono , Manipulação de Alimentos/métodos , Mudança Climática
8.
Foods ; 12(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766089

RESUMO

Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.

9.
Sci Total Environ ; 860: 160422, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36427716

RESUMO

The aim of this research is to define different scenarios that optimize the environmental sustainability of the post-harvest stage of vegetable products (cauliflower and brassicas mix). These scenarios considered different packaging materials; energy generation technologies for the processing plant (standard electricity mix vs. renewable options); organic waste management (composting, anaerobic digestion, and animal feeding); and refrigerated transportation (local, national, and international, using diesel, natural gas, and hybrid trucks and railway). The analysis has been carried out based on a foreground inventory provided by a company that operating internationally, in accordance with the International Organization for Standardization (ISO) 14,040 methodological framework and following the latest Product Environmental Footprint (PEF) protocols. The analysis describes four midpoint categories, single score (SS) using EF3.0 life cycle impact assessment (LCIA) methodology and the Cumulative Energy Demand. The carbon footprint (CF) of the post-harvest stage for a base case scenario ranged between 0.24 and 0.29 kg CO2 eq/kg of vegetable, with a strong contribution associated to the production of packaging materials (57.8-65.2 %) and the transport stage (national range in conventional diesel vehicles) (31.5-38.0 %). Comparatively, lower emissions were associated with the energy consumed at the processing factory (up to 4.1 %) while the composting of organic waste management produced some impact savings (up to -3.5 %). Although certain differences were observed, the dominance of the transport stage and the packaging materials is sustained in all the other environmental impact and energy categories evaluated. The most effective measures to reduce the environmental footprint of the post-harvest stage involve: i) using reusable packaging materials; ii) reducing the transport range and using vehicles running on natural gas or hybrid technologies; iii) the incorporation of renewable energy to supply the factory; and iv) the utilization of the organic residues in higher value applications such as animal feeding. Implementing the measures proposed in this study would reduce the post-harvest CF of fresh vegetables by 90 %.


Assuntos
Verduras , Gerenciamento de Resíduos , Animais , Gás Natural , Espanha , Pegada de Carbono , Gerenciamento de Resíduos/métodos
10.
Food Sci Technol Int ; 29(4): 372-382, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35491670

RESUMO

The inactivation kinetics of Listeria monocytogenes during High Hydrostatic Pressure (HHP) treatments was studied in a purple smoothie based of fresh fruit and vegetables. Pressure intensity studied was 300, 350, 400 and 450 MPa. Untreated samples were used as control. Furthermore, the effects on quality attributes (sensory, total soluble solids content, colour, titratable acidity, pH, vitamin C and total phenolics content) were also monitored. Microbial inactivation was modelled as a function of the HHP intensity using the Geeraerd model. Shoulder and tail effects were observed only for the 300 MPa pressure assayed, supporting a multiple hit kinetic inactivation of critical factors. Increasing the HHP intensity resulted in a faster inactivation with tailing. A strong positive correlation was observed between the pressure level and the inactivation rate (k). Hence, a linear model was used to describe the relationship between both variables. Nevertheless, further data are required to confirm this secondary model. Quality was mostly unaffected by the HHP treatments, except for the vitamin C content, which reported reductions of 26 and 21% after 300 and 350 MPa, respectively. In conclusion, HHP can be a viable technology for processing fruit and vegetable-based smoothies to preserve quality and safety. A pressure of 400 MPa is advisable to ensure an efficient microbial inactivation with the best sensory and nutritional quality retention.


Assuntos
Ácido Ascórbico , Viabilidade Microbiana , Contagem de Colônia Microbiana , Pressão Hidrostática , Cinética
11.
Foods ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36360013

RESUMO

Fruit- and vegetable-based products (F&Vs) have been conventionally processed using thermal techniques such as pasteurization, scalding, or/and drying, ensuring microbial safety and/or enzyme deactivation [...].

12.
Foods ; 11(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36076782

RESUMO

The food industry is quite interested in the use of (techno)-functional bioactive compounds from byproducts to develop 'clean label' foods in a circular economy. The aim of this review is to evaluate the state of the knowledge and scientific evidence on the use of green extraction technologies (ultrasound-, microwave-, and enzymatic-assisted) of bioactive compounds from pomegranate peel byproducts, and their potential application via the supplementation/fortification of vegetal matrixes to improve their quality, functional properties, and safety. Most studies are mainly focused on ultrasound extraction, which has been widely developed compared to microwave or enzymatic extractions, which should be studied in depth, including their combinations. After extraction, pomegranate peel byproducts (in the form of powders, liquid extracts, and/or encapsulated, among others) have been incorporated into several food matrixes, as a good tool to preserve 'clean label' foods without altering their composition and improving their functional properties. Future studies must clearly evaluate the energy efficiency/consumption, the cost, and the environmental impact leading to the sustainable extraction of the key bio-compounds. Moreover, predictive models are needed to optimize the phytochemical extraction and to help in decision-making along the supply chain.

13.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009208

RESUMO

Ultrasounds (US) and LED illumination are being studied to optimize yield and quality. The objective was to evaluate the effect of a pre-sowing US treatment combined with a postharvest photoperiod including LEDs on rocket sprouts' quality and phytochemicals during shelf life. A US treatment (35 kHz; 30 min) applied to seeds and a postharvest photoperiod of 14 h fluorescent light (FL) + 10 h White (W), Blue (B), Red (R) LEDs or Darkness (D) were assayed. Antioxidants as phenolics and sulfur compounds (glucosinolates and isothiocyanates) were periodically monitored over 14 days at 5 °C. The US treatment increased the sulforaphane content by ~4-fold compared to CTRL seeds and sprouts. The phenolic acids and the flavonoid biosynthesis were enhanced by ~25%, ~30%, and ~55% under photoperiods with W, B, and R, respectively, compared to darkness. The total glucosinolate content was increased by >25% (W) and >45% (B and R) compared to darkness, which also reported increases of ~2.7-fold (W), ~3.6-fold (B), and ~8-fold (R) of the sulforaphane content as a main isothiocyanate. Postharvest lighting is an interesting tool to stimulate the secondary metabolism, while a US treatment was able to increase the sulforaphane content in seeds and sprouts, although no synergistic effect was reported.

14.
Foods ; 11(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267286

RESUMO

Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms must avoid. However, many of the acclimation changes elicited by UV induce a wide range of positive effects in plant physiology through the elicitation of secondary antioxidant metabolites and natural defenses. Therefore, this fact has changed the original UV conception as a germicide and potentially damaging agent, leading to the concept that it is worthy of application in harvested commodities to take advantage of its beneficial responses. Four decades have already passed since postharvest UV radiation applications began to be studied. During this time, UV treatments have been successfully evaluated for different purposes, including the selection of raw materials, the control of postharvest diseases and human pathogens, the elicitation of nutraceutical compounds, the modulation of ripening and senescence, and the induction of cross-stress tolerance. Besides the microbicide use of UV radiation, the effect that has received most attention is the elicitation of bioactive compounds as a defense mechanism. UV treatments have been shown to induce the accumulation of phytochemicals, including ascorbic acid, carotenoids, glucosinolates, and, more frequently, phenolic compounds. The nature and extent of this elicitation have been reported to depend on several factors, including the product type, maturity, cultivar, UV spectral region, dose, intensity, and radiation exposure pattern. Even though in recent years we have greatly increased our understanding of UV technology, some major issues still need to be addressed. These include defining the operational conditions to maximize UV radiation efficacy, reducing treatment times, and ensuring even radiation exposure, especially under realistic processing conditions. This will make UV treatments move beyond their status as an emerging technology and boost their adoption by industry.

15.
Foods ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159417

RESUMO

Background: According to social demands, the agri-food industry must elaborate convenient safe and healthy foods rich in phytochemicals while minimising processing inputs like energy consumption. Young plants in their first stages of development represent great potential. Objective: This review summarises the latest scientific findings concerning the use of UV and visible spectrum LED lighting as green, sustainable, and low-cost technologies to improve the quality of sprouts, microgreens, and baby leaves to enhance their health-promoting compounds, focusing on their mode of action while reducing costs and energy. Results: These technologies applied during growing and/or after harvesting were able to improve physiological and morphological development of sprouted seeds while increasing their bioactive compound content without compromising safety and other quality attributes. The novelty is to summarise the main findings published in a comprehensive review, including the mode of action, and remarking on the possibility of its postharvest application where the literature is still scarce. Conclusions: Illumination with UV and/or different regions of the visible spectrum during growing and shelf life are good abiotic elicitors of the production of phytochemicals in young plants, mainly through the activation of specific photoreceptors and ROS production. However, we still need to understand the mechanistic responses and their dependence on the illumination conditions.

16.
Foods ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828814

RESUMO

BACKGROUND: Phytochemical, bioactive and nutraceutical compounds are terms usually found in the scientific literature related to natural compounds found in plants linked to health-promoting properties. Fruit and vegetable beverages (mainly juice and smoothies) are a convenient strategy to enhance the consumption of horticultural commodities, with the possibility of being fortified with plant byproducts to enhance the content of bioactive compounds. OBJECTIVE: This review aims to analyse the different green technologies applied in beverage processing with a fortification effect on their health promoting compounds. RESULTS: Fortification can be performed by several strategies, including physical elicitors (e.g., processing technologies), plant/algae extract supplementation, and fermentation with probiotics, among others. Thermal processing technologies are conventionally used to ensure the preservation of food safety with a long shelf life, but this frequently reduces nutritional and sensory quality. However, green non-thermal technologies (e.g., UV, high-pressure processing, pulsed electric fields, ultrasounds, cold plasma, etc.) are being widely investigated in order to reduce costs and make possible more sustainable production processes without affecting the nutritional and sensory quality of beverages. CONCLUSIONS: Such green processing technologies may enhance the content of phytochemical compounds through improvement of their extraction/bioaccessibility and/or different biosynthetic reactions that occurred during processing.

17.
Foods ; 10(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34359525

RESUMO

Improving the environmental sustainability of the food supply chain will help to achieve the United Nations Sustainable Development Goals (SDGs). This environmental sustainability is related to different SDGs, but mainly to SDG 2 (Zero Hunger), SDG 12 (Responsible Production and Consumption), SDG 13 (Climate Action), and SDG 15 (Life on Land). The strategies and measures used to improve this aspect of the food supply chain must remain in balance with other sustainability aspects (economic and social). In this framework, the interactions and possible conflicts between food supply chain safety and sustainability need to be assessed. Although priority must be given to safety aspects, food safety policies should be calibrated in order to avoid unnecessary deleterious effects on the environment. In the present review, a number of potential tensions and/or disagreements between the microbial safety and environmental sustainability of the fresh produce supply chain are identified and discussed. The addressed issues are spread throughout the food supply chain, from primary production to the end-of-life of the products, and also include the handling and processing industry, retailers, and consumers. Interactions of fresh produce microbial safety with topics such as food waste, supply chain structure, climate change, and use of resources have been covered. Finally, approaches and strategies that will prove useful to solve or mitigate the potential contradictions between fresh produce safety and sustainability are described and discussed. Upon analyzing the interplay between microbial safety and the environmental sustainability of the fresh produce supply chain, it becomes clear that decisions that are taken to ensure fresh produce safety must consider the possible effects on environmental, economic, and social sustainability aspects. To manage these interactions, a global approach considering the interconnections between human activities, animals, and the environment will be required.

18.
Foods ; 10(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205868

RESUMO

The handling of fresh fruits and vegetables in reusable plastic crates (RPCs) has the potential to increase the sustainability of packaging in the fresh produce supply chain. However, the utilization of multiple-use containers can have consequences related to the microbial safety of this type of food. The present study assessed the potential cross-contamination of fresh cauliflowers with Salmonella enterica via different contact materials (polypropylene from RPCs, corrugated cardboard, and medium-density fiberboard (MDF) from wooden boxes). Additionally, the survival of the pathogenic microorganism was studied in cauliflowers and the contact materials during storage. The life cycle assessment (LCA) approach was used to evaluate the environmental impact of produce handling containers made from the different food-contact materials tested. The results show a higher risk of cross-contamination via polypropylene compared with cardboard and MDF. Another outcome of the study is the potential of Salmonella for surviving both in cross-contaminated produce and in contact materials under supply chain conditions. Regarding environmental sustainability, RPCs have a lower environmental impact than single-use containers (cardboard and wooden boxes). To exploit the potential environmental benefits of RPCs while ensuring food safety, it is necessary to guarantee the hygiene of this type of container.

19.
Plant Physiol Biochem ; 165: 274-285, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34090151

RESUMO

The objective of the present study was to evaluate the periodical UV-B radiation hormesis during kale seeds germination in their main content of secondary metabolite compounds (phenols; glucosinolates; total antioxidant capacity -TAC-) and their changes during a refrigerated shelf-life. The total UV-B doses received were 0, 5, 10, and 15 kJ m-2 (CTRL, UVB5, UVB10, and UVB15) in where the 25% was applied on the 3rd, 5th, 7th, and 10th sprouting day. UV radiation did not affect the morphological development of the sprouts. UVB10 and UVB15 treatments increased their phenolic content (>30%). Likewise, TAC was increased by UV-B lighting ~10% (DPPH) and ~20% (FRAP). The hydroxycinnamic acid content in UVB15-treated sprouts increased by 52%, while UVB5 reported an increase of 34% in the kaempferol-3,7-di-O-glucoside concentration, compared to CTRL. After 10 d at 4 °C of shelf-life, content of gallic acid hexoside I and gallic acid increased by 55 and 78% compared to UV-untreated kale sprouts, respectively. Glucoraphanin was the main glucosinolate found in kale sprouts and seeds, followed by 4-hydroxy-glucobrassicin, whose biosynthesis was enhanced by UVB10 (~24 and ~27%) and UVB15 (~36 and ~30%), respectively, compared to CTRL. In conclusion, periodical low UV-B illumination represents a useful tool to stimulate phytochemicals biosynthesis in kale sprouts as an important source of bioactive compounds with potential health benefits.


Assuntos
Brassica , Antioxidantes , Suplementos Nutricionais , Glucosinolatos , Hormese , Raios Ultravioleta
20.
Food Sci Technol Int ; 27(8): 734-745, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33423548

RESUMO

The effect of revalorized Bimi leaves (B) and/or mustard (M) addition, as supplementary ingredients, to develop an innovative kale (K) pesto sauce was studied. Microbial, physicochemical (color, total soluble solids content -SSC-, pH and titratable acidity -TA-) and sensory quality were studied during 20 days at 5 °C. Bioactive compounds changes (total phenolics, total antioxidant capacity and glucoraphanin contents) were also monitored throughout storage. The high TA and pH changes in the last 6 days of storage were avoided in the K+B pesto when adding mustard, due to the antimicrobial properties of this brassica seed. SSC was increased when B + M were added to the K pesto, which positively masked the kale-typical bitterness. Mustard addition hardly change yellowness of the K pesto, being not detected in the sensory analyses, showing K+B+M pesto the lowest color differences after 20 days of shelf life. The addition of Bimi leaves to the K pesto enhanced its phenolic content while mustard addition did not negatively affect such total antioxidant compounds content. Finally, mustard addition effectively aimed to glucoraphanin conversion to its bioactive products. Conclusively, an innovative kale pesto supplemented with Bimi by-products was hereby developed, being its overall quality well preserved up to 20 days at 5 °C due to the mustard addition.


Assuntos
Antioxidantes , Mostardeira , Suplementos Nutricionais , Fenóis/análise , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA