Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Chip ; 22(24): 4860-4870, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36377409

RESUMO

We present a novel approach for the design of capillary-driven microfluidic networks using a machine learning genetic algorithm (ML-GA). This strategy relies on a user-friendly 1D numerical tool specifically developed to generate the necessary data to train the ML-GA. This 1D model was validated using analytical results issued from a Y-shaped capillary network and experimental data. For a given microfluidic network, we defined the objective of the ML-GA to obtain the set of geometric parameters that produces the closest matching results against two prescribed curves of delivered volume against time. We performed more than 20 generations of 10 000 simulations to train the ML-GA and achieved the optimal solution of the inverse design problem. The optimisation took less than 6 hours, and the results were successfully validated using experimental data. This work establishes the utility of the presented method for the fast and reliable design of complex capillary-driven devices, enabling users to optimise their designs via an easy-to-use 1D numerical tool and machine learning technique.


Assuntos
Aprendizado de Máquina , Microfluídica , Microfluídica/instrumentação , Algoritmos , Desenho de Equipamento
2.
Langmuir ; 38(43): 13296-13304, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269940

RESUMO

In this article, we consider rectangular microchannels composed of glass and thin polymeric walls with different roughness in which opposed walls are of the same material but adjacent walls are not. We propose a model for fluid capillary transport into these rectangular microchannels when horizontally positioned and focus our research on how the microchannel aspect ratio modifies the motion during the initial viscous regimes. The model relies on an effective static contact angle and an effective friction coefficient that averages local magnitudes in the cross section. An extensive experimental investigation with different microchannels enabled us to obtain these coefficients for different aspect ratios. While for low aspect ratios, the effective contact angle presents the smallest values, the effective friction coefficient shows the larger ones. With rough surfaces, the spontaneous occurrence of pinning and depinning events associated with sharp wall defects notably reduces the effective static contact angle even when high aspect ratios are used. The obtained values of the effective friction coefficient show good agreement with previous literature investigations for rough and smooth lateral wall surfaces. Finally, we propose a nondimensional time to establish when contact angle effects dominate the dynamics. We found that for the materials and fluid properties used in this work, these effects become negligible for times larger than t ∼ 1 s.

3.
Bioinspir Biomim ; 17(6)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998610

RESUMO

This work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models for several physiological systems in which fluid-structure interaction produces large deformation of the wall. We report the experimental results of the observed self-sustained oscillations. These oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite narrow. We propose a simplified analytical model to explore the conditions under which this motion is possible. The analytical approach considers asymptotic solutions of the Navier-Stokes equation with a perturbation technique. The comparison between the experimental pressure measured at the midlength of the channel and the analytical result issued with a model neglecting viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that is predicted by this simplified model.


Assuntos
Viscosidade , Movimento (Física)
4.
PLoS One ; 16(8): e0256469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432821

RESUMO

The current COVID-19 pandemic has led the world to an unprecedented global shortage of ventilators, and its sharing has been proposed as an alternative to meet the surge. This study outlines the performance of a preformed novel interface called 'ACRA', designed to split ventilator outflow into two breathing systems. The 'ACRA' interface was built using medical use approved components. It consists of four unidirectional valves, two adjustable flow-restrictor valves placed on the inspiratory limbs of each unit, and one adjustable PEEP valve placed on the expiratory limb of the unit that would require a greater PEEP. The interface was interposed between a ventilator and two lung units (phase I), two breathing simulators (phase II) and two live pigs with heterogeneous lung conditions (phase III). The interface and ventilator adjustments tested the ability to regulate individual pressures and the resulting tidal volumes. Data were analyzed using Friedman and Wilcoxon tests test (p < 0.05). Ventilator outflow splitting, independent pressure adjustments and individual tidal volume monitoring were feasible in all phases. In all experimental measurements, dual ventilation allowed for individual and tight adjustments of the pressure, and thus volume delivered to each paired lung unit without affecting the other unit's ventilation-all the modifications performed on the ventilator equally affected both paired lung units. Although only suggested during a dire crisis, this experiment supports dual ventilation as an alternative worth to be considered.


Assuntos
Pulmão/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia , Ventiladores Mecânicos , Animais , Pressão Sanguínea , Dióxido de Carbono/química , Simulação por Computador , Modelos Animais de Doenças , Frequência Cardíaca , Concentração de Íons de Hidrogênio , Suínos , Volume de Ventilação Pulmonar
5.
PLoS One ; 16(5): e0250672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945551

RESUMO

In this work a shared pressure-controlled ventilation device for two patients is considered. By the use of different valves incorporated to the circuit, the device enables the restriction of possible cross contamination and the individualization of tidal volumes, driving pressures, and positive end expiratory pressure PEEP. Possible interactions in the expiratory dynamics of different pairs of patients are evaluated in terms of the characteristic exhalatory times. These characteristic times can not be easily established using simple linear lumped element models. For this purpose, a 1D model using the Hydraulic and Mechanical libraries in Matlab Simulink was developed. In this sense, experiments accompany this study to validate the model and characterize the different valves of the circuit. Our results show that connecting two patients in parallel to a ventilator always resulted in delays of time during the exhalation. The size of this effect depends on different parameters associated with the patients, the circuit and the ventilator. The dynamics of the exhalation of both patients is determined by the ratios between patients exhalatory resistances, compliances, driving pressures and PEEPs. Adverse effects on exhalations became less noticeable when respiratory parameters of both patients were similar, flow resistances of valves added to the circuit were negligible, and when the ventilator exhalatory valve resistance was also negligible. The asymmetries of driving pressures, compliances or resistances exacerbated the possibility of auto-PEEP and the increase in relaxation times became greater in one patient than in the other. In contrast, exhalatory dynamics were less sensitive to the ratio of PEEP imposed to the patients.


Assuntos
Expiração , Respiração Artificial/instrumentação , Ventiladores Mecânicos , Humanos
6.
Chaos ; 29(12): 123126, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893675

RESUMO

Lagrangian transport in the dynamical systems approach has so far been investigated disregarding the connection between the whole state space and the concept of observability. Key issues such as the definitions of Lagrangian and chaotic mixing are revisited under this light, establishing the importance of rewriting nonautonomous flow systems derived from a stream function in autonomous form, and of not restricting the characterization of their dynamics in subspaces. The observability of Lagrangian chaos from a reduced set of measurements is illustrated with two canonical examples: the Lorenz system derived as a low-dimensional truncation of the Rayleigh-Bénard convection equations and the driven double-gyre system introduced as a kinematic model of configurations observed in the ocean. A symmetrized version of the driven double-gyre model is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA