Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Dev Cell ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944040

RESUMO

We describe a next-generation Drosophila protein interaction map-"DPIM2"-established from affinity purification-mass spectrometry of 5,805 baits, covering the largest fraction of the Drosophila proteome. The network contains 32,668 interactions among 3,644 proteins, organized into 632 clusters representing putative functional modules. Our analysis expands the pool of known protein interactions in Drosophila, provides annotation for poorly studied genes, and postulates previously undescribed protein interaction relationships. The predictive power and functional relevance of this network are probed through the lens of the Notch signaling pathway, and we find that newly identified members of complexes that include known Notch modifiers can also modulate Notch signaling. DPIM2 allows direct comparisons with a recently published human protein interaction network, defining the existence of functional interactions conserved across species. Thus, DPIM2 defines a valuable resource for predicting protein co-complex memberships and functional associations as well as generates functional hypotheses regarding specific protein interactions.

2.
Proc Natl Acad Sci U S A ; 121(24): e2400732121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838021

RESUMO

Cytoplasmic mislocalization and aggregation of TDP-43 protein are hallmarks of amyotrophic lateral sclerosis (ALS) and are observed in the vast majority of both familial and sporadic cases. How these two interconnected processes are regulated on a molecular level, however, remains enigmatic. Genome-wide screens for modifiers of the ALS-associated genes TDP-43 and FUS have identified the phospholipase D (Pld) pathway as a key regulator of ALS-related phenotypes in the fruit fly Drosophila melanogaster [M. W. Kankel et al., Genetics 215, 747-766 (2020)]. Here, we report the results of our search for downstream targets of the enzymatic product of Pld, phosphatidic acid. We identify two conserved negative regulators of the cAMP/PKA signaling pathway, the phosphodiesterase dunce and the inhibitory subunit PKA-R2, as modifiers of pathogenic phenotypes resulting from overexpression of the Drosophila TDP-43 ortholog TBPH. We show that knockdown of either of these genes results in a mitigation of both TBPH aggregation and mislocalization in larval motor neuron cell bodies, as well as an amelioration of adult-onset motor defects and shortened lifespan induced by TBPH. We determine that PKA kinase activity is downstream of both TBPH and Pld and that overexpression of the PKA target CrebA can rescue TBPH mislocalization. These findings suggest a model whereby increasing cAMP/PKA signaling can ameliorate the molecular and functional effects of pathological TDP-43.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Transdução de Sinais , Animais , AMP Cíclico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Humanos , Neurônios Motores/metabolismo
3.
Genetics ; 215(3): 747-766, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345615

RESUMO

Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig's disease, is a devastating neurodegenerative disorder lacking effective treatments. ALS pathology is linked to mutations in >20 different genes indicating a complex underlying genetic architecture that is effectively unknown. Here, in an attempt to identify genes and pathways for potential therapeutic intervention and explore the genetic circuitry underlying Drosophila models of ALS, we carry out two independent genome-wide screens for modifiers of degenerative phenotypes associated with the expression of transgenic constructs carrying familial ALS-causing alleles of FUS (hFUSR521C) and TDP-43 (hTDP-43M337V). We uncover a complex array of genes affecting either or both of the two strains, and investigate their activities in additional ALS models. Our studies indicate the pathway that governs phospholipase D activity as a major modifier of ALS-related phenotypes, a notion supported by data we generated in mice and others collected in humans.


Assuntos
Esclerose Lateral Amiotrófica/genética , Genes Modificadores , Fosfolipase D/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Humanos , Mutação , Fosfolipase D/genética , Proteína FUS de Ligação a RNA/genética , Transgenes
4.
Wiley Interdiscip Rev Dev Biol ; 9(1): e358, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502763

RESUMO

The role of the Notch signaling pathway in neural development has been well established over many years. More recent studies, however, have demonstrated that Notch continues to be expressed and active throughout adulthood in many areas of the central nervous system. Notch signals have been implicated in adult neurogenesis, memory formation, and synaptic plasticity in the adult organism, as well as linked to acute brain trauma and chronic neurodegenerative conditions. NOTCH3 mutations are responsible for the most common form of hereditary stroke, the progressive disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Notch has also been associated with several progressive neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Although numerous studies link Notch activity with CNS homeostasis and neurodegenerative diseases, the data thus far are primarily correlative, rather than functional. Nevertheless, the evidence for Notch pathway activity in specific neural cellular contexts is strong, and certainly intriguing, and points to the possibility that the pathway carries therapeutic promise. This article is categorized under: Nervous System Development > Flies Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: General Principles.


Assuntos
Sistema Nervoso Central/metabolismo , Homeostase/fisiologia , Doenças Neurodegenerativas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Mutação/fisiologia
5.
Cell Rep ; 29(1): 225-235.e5, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577952

RESUMO

PINK1 and Parkin are established mediators of mitophagy, the selective removal of damaged mitochondria by autophagy. PINK1 and Parkin have been proposed to act as tumor suppressors, as loss-of-function mutations are correlated with enhanced tumorigenesis. However, it is unclear how PINK1 and Parkin act in coordination during mitophagy to influence the cell cycle. Here we show that PINK1 and Parkin genetically interact with proteins involved in cell cycle regulation, and loss of PINK1 and Parkin accelerates cell growth. PINK1- and Parkin-mediated activation of TBK1 at the mitochondria during mitophagy leads to a block in mitosis due to the sequestration of TBK1 from its physiological role at centrosomes during mitosis. Our study supports a diverse role for the far-reaching, regulatory effects of mitochondrial quality control in cellular homeostasis and demonstrates that the PINK1/Parkin pathway genetically interacts with the cell cycle, providing a framework for understanding the molecular basis linking PINK1 and Parkin to mitosis.


Assuntos
Ciclo Celular/genética , Mitocôndrias/genética , Mitose/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células HCT116 , Células HEK293 , Células HeLa , Homeostase/genética , Humanos , Mitofagia/genética
6.
Adv Exp Med Biol ; 1066: 125-140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30030825

RESUMO

The Notch pathway controls a very broad spectrum of cell fates in metazoans during development, influencing proliferation, differentiation and cell death. Given its central role in normal development and homeostasis, misregulation of Notch signals can lead to various disorders including cancer. How the Notch pathway mediates such pleiotropic and differential effects is of fundamental importance. It is becoming increasingly clear through a number of large-scale genetic and proteomic studies that Notch interacts with a staggeringly large number of other genes and pathways in a context-dependent, complex, and highly regulated network, which determines the ultimate biological outcome. How best to interpret and analyze the continuously increasing wealth of data on Notch interactors remains a challenge. Here we review the current state of genetic and proteomic data related to the Notch interactome.


Assuntos
Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Receptores Notch/genética
7.
Cell Rep ; 22(4): 992-1002, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386140

RESUMO

Neurogenesis continues in the ventricular-subventricular zone (V-SVZ) of the adult forebrain from quiescent neural stem cells (NSCs). V-SVZ NSCs are a reservoir for new olfactory bulb (OB) neurons that migrate through the rostral migratory stream (RMS). To generate neurons, V-SVZ NSCs need to activate and enter the cell cycle. The mechanisms underlying NSC transition from quiescence to activity are poorly understood. We show that Notch2, but not Notch1, signaling conveys quiescence to V-SVZ NSCs by repressing cell-cycle-related genes and neurogenesis. Loss of Notch2 activates quiescent NSCs, which proliferate and generate new neurons of the OB lineage. Notch2 deficiency results in accelerated V-SVZ NSC exhaustion and an aging-like phenotype. Simultaneous loss of Notch1 and Notch2 resembled the total loss of Rbpj-mediated canonical Notch signaling; thus, Notch2 functions are not compensated in NSCs, and Notch2 is indispensable for the maintenance of NSC quiescence in the adult V-SVZ.


Assuntos
Ventrículos Laterais/crescimento & desenvolvimento , Células-Tronco Neurais/metabolismo , Receptor Notch2/genética , Animais , Diferenciação Celular , Camundongos , Transdução de Sinais
8.
Nature ; 545(7655): 505-509, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514442

RESUMO

The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidating how genome variation contributes to disease. Here we present BioPlex 2.0 (Biophysical Interactions of ORFeome-derived complexes), which uses robust affinity purification-mass spectrometry methodology to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein-coding genes from the human genome, and constitutes, to our knowledge, the largest such network so far. With more than 56,000 candidate interactions, BioPlex 2.0 contains more than 29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering of interacting proteins identified more than 1,300 protein communities representing diverse cellular activities. Genes essential for cell fitness are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2,000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization.


Assuntos
Bases de Dados de Proteínas , Doença , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteoma/metabolismo , Fenômenos Fisiológicos Celulares/genética , Genoma Humano , Humanos , Espaço Intracelular/metabolismo , Cadeias de Markov , Espectrometria de Massas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Proteoma/análise , Proteoma/química , Proteoma/genética
9.
Curr Top Dev Biol ; 116: 17-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26970611

RESUMO

The essential and highly conserved Notch signaling pathway controls a wide range of cell fate decisions during development, including cellular proliferation. Notch mediates both pro- and anti-proliferative effects in development, stem cells, and cancer depending on cellular context. Furthermore, it can induce proliferation in both cell-autonomous and non-cell-autonomous manners. Interacting genes and crosstalking signaling pathways play essential roles in regulating the proliferative response to Notch signals. A large number of genes that participate in the Notch network to influence proliferation have been identified, including several that activate the JNK signaling pathway, which interacts with Notch to induce both hyperplastic and invasive cellular behaviors. It is clear that dissecting the genetic circuitry surrounding Notch is essential to understanding the proliferative response to Notch in both development and cancer.


Assuntos
Neoplasias/patologia , Receptores Notch/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/metabolismo , Receptores Notch/genética , Transdução de Sinais/fisiologia
10.
Genome Res ; 25(11): 1692-702, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26294687

RESUMO

In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified "high occupancy target" (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteins and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. From the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Drosophila/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Análise de Sequência de RNA , Transfecção
11.
Cell ; 162(2): 425-440, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186194

RESUMO

Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors.


Assuntos
Mapas de Interação de Proteínas , Proteômica/métodos , Esclerose Lateral Amiotrófica/genética , Humanos , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/isolamento & purificação , Proteínas/metabolismo
12.
Elife ; 4: e05996, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26222204

RESUMO

Notch signaling controls a wide range of cell fate decisions during development and disease via synergistic interactions with other signaling pathways. Here, through a genome-wide genetic screen in Drosophila, we uncover a highly complex Notch-dependent genetic circuitry that profoundly affects proliferation and consequently hyperplasia. We report a novel synergistic relationship between Notch and either of the non-receptor tyrosine kinases Src42A and Src64B to promote hyperplasia and tissue disorganization, which results in cell cycle perturbation, JAK/STAT signal activation, and differential regulation of Notch targets. Significantly, the JNK pathway is responsible for the majority of the phenotypes and transcriptional changes downstream of Notch-Src synergy. We previously reported that Notch-Mef2 also activates JNK, indicating that there are commonalities within the Notch-dependent proliferation circuitry; however, the current data indicate that Notch-Src accesses JNK in a significantly different fashion than Notch-Mef2.


Assuntos
Proliferação de Células , Proteínas de Drosophila/metabolismo , Hiperplasia , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/metabolismo , Animais , Drosophila
13.
Cell Rep ; 8(6): 2031-2043, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25242320

RESUMO

Specific cellular fates and functions depend on differential gene expression, which occurs primarily at the transcriptional level and is controlled by complex regulatory networks of transcription factors (TFs). TFs act through combinatorial interactions with other TFs, cofactors, and chromatin-remodeling proteins. Here, we define protein-protein interactions using a coaffinity purification/mass spectrometry method and study 459 Drosophila melanogaster transcription-related factors, representing approximately half of the established catalog of TFs. We probe this network in vivo, demonstrating functional interactions for many interacting proteins, and test the predictive value of our data set. Building on these analyses, we combine regulatory network inference models with physical interactions to define an integrated network that connects combinatorial TF protein interactions to the transcriptional regulatory network of the cell. We use this integrated network as a tool to connect the functional network of genetic modifiers related to mastermind, a transcriptional cofactor of the Notch pathway.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo , Asas de Animais/metabolismo
14.
Methods Mol Biol ; 1187: 181-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25053490

RESUMO

Recent large-scale studies have provided a global description of the interactome-the whole network of protein interactions in a cell or an organism-for several model organisms. Defining protein interactions on a proteome-wide scale has led to a better understanding of the cellular functions of many proteins, especially those that have not been studied by classical molecular genetic approaches. Here we describe the resources, methods, and techniques necessary for generation of such a proteome-scale interactome in a high throughput manner. These procedures will also be applicable to low or medium throughput focused studies aimed at understanding interactions between members of specific pathways such as Notch signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Receptores Notch/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Células Cultivadas , Drosophila/química , Drosophila/citologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/isolamento & purificação , Espectrometria de Massas/métodos , Proteoma/análise , Proteoma/isolamento & purificação , Proteoma/metabolismo , Receptores Notch/análise , Receptores Notch/isolamento & purificação , Transdução de Sinais , Transfecção/métodos
15.
Methods Enzymol ; 534: 283-99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24359960

RESUMO

Genetic modifier screens offer a powerful, indeed a uniquely powerful tool for the analysis and identification of elements capable of modulating specific cellular functions in development. Here, we describe the methodology that allowed us to explore the genetic circuitry that affects a Notch mutant phenotype caused by the abnormal endosomal trafficking of the Notch receptor. Endosomal trafficking events are increasingly appreciated to play a major role in controlling Notch signaling in development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Endossomos/metabolismo , Genoma de Inseto , Receptores Notch/metabolismo , Transdução de Sinais/genética , Alelos , Animais , Arrestinas/genética , Arrestinas/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Testes Genéticos , Genótipo , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Transporte Proteico , Receptores Notch/genética , Ubiquitinação , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Asas de Animais/patologia
16.
J Cell Sci ; 126(Pt 10): 2135-40, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23729744

RESUMO

Cell-cell interactions define a quintessential aspect of multicellular development. Metazoan morphogenesis depends on a handful of fundamental, conserved cellular interaction mechanisms, one of which is defined by the Notch signaling pathway. Signals transmitted through the Notch surface receptor have a unique developmental role: Notch signaling links the fate of one cell with that of a cellular neighbor through physical interactions between the Notch receptor and the membrane-bound ligands that are expressed in an apposing cell. The developmental outcome of Notch signals is strictly dependent on the cellular context and can influence differentiation, proliferation and apoptotic cell fates. The Notch pathway is conserved across species (Artavanis-Tsakonas et al., 1999; Bray, 2006; Kopan and Ilagan, 2009). In humans, Notch malfunction has been associated with a diverse range of diseases linked to changes in cell fate and cell proliferation including cancer (Louvi and Artavanis-Tsakonas, 2012). In this Cell Science at a Glance article and the accompanying poster we summarize the molecular biology of Notch signaling, its role in development and its relevance to disease.


Assuntos
Comunicação Celular/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Microambiente Celular , Desenvolvimento Embrionário , Humanos , Morfogênese
17.
Proc Natl Acad Sci U S A ; 110(26): E2371-80, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23757500

RESUMO

The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog. We identified more than 300 candidate genes that alter an Smn-dependent phenotype in vivo. Integrating the results from our genetic screens, large-scale protein interaction studies, and bioinformatic analysis, we define a unique interactome for SMN that provides a knowledge base for a better understanding of SMA.


Assuntos
Proteínas de Drosophila/genética , Genes de Insetos , Proteínas de Ligação a RNA/genética , Animais , Animais Geneticamente Modificados , Redes Reguladoras de Genes , Humanos , Bases de Conhecimento , Junção Neuromuscular/genética , Fenótipo , Interferência de RNA , Especificidade da Espécie , Atrofias Musculares Espinais da Infância/genética
18.
Cell Stem Cell ; 13(2): 190-204, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23791481

RESUMO

Accumulating evidence suggests that Notch signaling is active at multiple points during hematopoiesis. Until recently, the majority of such studies focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles has been limited due to a paucity of genetic tools available. In this manuscript we generate and describe animal models to identify and fate-map stem and progenitor cells expressing each Notch receptor, delineate Notch pathway activation, and perform in vivo gain- and loss-of-function studies dissecting Notch signaling in early hematopoiesis. These models provide comprehensive genetic maps of lineage-specific Notch receptor expression and activation in hematopoietic stem and progenitor cells. Moreover, they establish a previously unknown role for Notch signaling in the commitment of blood progenitors toward the erythrocytic lineage and link Notch signaling to optimal organismal response to stress erythropoiesis.


Assuntos
Hematopoese , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Transdução de Sinais , Estresse Fisiológico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Divisão Celular , Linhagem da Célula/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Feto/citologia , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Modelos Biológicos , Estresse Fisiológico/genética , Fatores de Transcrição HES-1 , Transcrição Gênica
19.
Nat Cell Biol ; 15(5): 451-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23604318

RESUMO

Notch signalling is implicated in stem and progenitor cell fate control in numerous organs. Using conditional in vivo genetic labelling we traced the fate of cells expressing the Notch2 receptor paralogue and uncovered the existence of two previously unrecognized mammary epithelial cell lineages that we term S (Small) and L (Large). S cells appear in a bead-on-a-string formation and are embedded between the luminal and basal/myoepithelial layers in a unique reiterative pattern, whereas single or paired L cells appear among ductal and alveolar cells. Long-term lineage tracing and functional studies indicate that S and L cells regulate ipsi- and contralateral spatial placement of tertiary branches and formation of alveolar clusters. Our findings revise present models of mammary epithelial cell hierarchy, reveal a hitherto undescribed mechanism regulating branching morphogenesis and may have important implications for identification of the cell-of-origin of distinct breast cancer subtypes.


Assuntos
Linhagem da Célula , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Receptor Notch2/genética , Coloração e Rotulagem/métodos , Fatores Etários , Animais , Biomarcadores/metabolismo , Antígeno CD24/metabolismo , Diferenciação Celular , Tamanho Celular , Citoplasma/genética , Citoplasma/metabolismo , Células Epiteliais/citologia , Feminino , Imunofluorescência , Lactação/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Mucina-1/genética , Mucina-1/metabolismo , Fenótipo , Gravidez , Receptor Notch2/metabolismo , Transdução de Sinais , Tamoxifeno/análogos & derivados , Tamoxifeno/química , beta-Galactosidase/metabolismo
20.
Development ; 140(9): 2039-49, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23571220

RESUMO

Cell-to-cell communication via the Notch pathway is mediated between the membrane-bound Notch receptor and either of its canonical membrane-bound ligands Delta or Serrate. Notch ligands mediate receptor transactivation between cells and also mediate receptor cis-inhibition when Notch and ligand are co-expressed on the same cell. We demonstrate in Drosophila that removal of any of the EGF-like repeats (ELRs) 4, 5 or 6 results in a Serrate molecule capable of transactivating Notch but exhibiting little or no Notch cis-inhibition capacity. These forms of Serrate require Epsin (Liquid facets) to transduce a signal, suggesting that ELR 4-6-deficient ligands still require endocytosis for Notch activation. We also demonstrate that ELRs 4-6 are responsible for the dominant-negative effects of Serrate ligand forms that lack the intracellular domain and are therefore incapable of endocytosis in the ligand-expressing cell. We find that ELRs 4-6 of Serrate are conserved across species but do not appear to be conserved in Delta homologs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Sequência Conservada , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endocitose , Feminino , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Ligantes , Masculino , Proteínas de Membrana/genética , Ligação Proteica , Receptores Notch/genética , Proteínas Serrate-Jagged , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção , Transgenes , Asas de Animais/citologia , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA