Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(29): 6572-6576, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37458683

RESUMO

The electrodynamics of nanoconfined water have been shown to change dramatically compared to bulk water, opening room for safe electrochemical systems. We demonstrate a nanofluidic "water-only" battery that exploits anomalously high electrolytic properties of pure water at firm confinement. The device consists of a membrane electrode assembly of carbon-based nanomaterials, forming continuously interconnected water-filled nanochannels between the separator and electrodes. The efficiency of the cell in the 1-100 nm pore size range shows a maximum energy density at 3 nm, challenging the region of the current metal-ion batteries. Our results establish the electrodynamic fundamentals of nanoconfined water and pave the way for low-cost and inherently safe energy storage solutions that are much needed in the renewable energy sector.

2.
J Phys Chem B ; 124(48): 11022-11029, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33225700

RESUMO

Chemical polarity governs various mechanical, chemical, and thermodynamic properties of dielectrics. Polar liquids have been amply studied, yet the basic mechanisms underpinning their dielectric properties remain not fully understood, as standard models following Debye's phenomenological approach do not account for quantum effects and cannot aptly reproduce the full dc-up-to-THz spectral range. Here, using the illustrative case of monohydric alcohols, we show that deep tunneling and the consequent intermolecular separation of excess protons and "proton-holes" in the polar liquids govern their static and dynamic dielectric properties on the same footing. We performed systematic ultrabroadband (0-10 THz) spectroscopy experiments with monohydric alcohols of different (0.4-1.6 nm) molecular lengths and show that the finite lifetime of molecular species and the proton-hole correlation length are the two principle parameters responsible for the dielectric response of all the studied alcohols across the entire frequency range. Our results demonstrate that a quantum nonrotational intermolecular mechanism drives the polarization in alcohols while the rotational mechanism of molecular polarization plays a secondary role, manifesting itself in the sub-terahertz region only.

3.
Sci Rep ; 10(1): 11320, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647228

RESUMO

The most common species in liquid water, next to neutral [Formula: see text] molecules, are the [Formula: see text] and [Formula: see text] ions. In a dynamic picture, their exact concentrations depend on the time scale at which these are probed. Here, using a spectral-weight analysis, we experimentally resolve the fingerprints of the elusive fluctuations-born short-living [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] ions in the IR spectra of light ([Formula: see text]), heavy ([Formula: see text]), and semi-heavy (HDO) water. We find that short-living ions, with concentrations reaching [Formula: see text] of the content of water molecules, coexist with long-living pH-active ions on the picosecond timescale, thus making liquid water an effective ionic liquid in femtochemistry.

4.
Phys Chem Chem Phys ; 21(15): 8067-8072, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30932107

RESUMO

Knowledge of the electrical properties of liquid and solid water is extremely important for a detailed understanding of their structures. Though the macroscopic parameters differ, ice and water still have much in common from the dielectric spectroscopy viewpoint and should thus be considered on the same footing for the study of their electrical properties. In this work, we treat the complete dielectric spectra of ice and water, covering fourteen orders in frequency magnitude. Introducing the notion of 'excess proton gas' we explain the similarities between ice and water, and derive a model which links together the infrared vibrations and the static conductivity and dielectric constant. This model provides a very good description of spectra up to 10 THz and reproduces well the temperature dependence of the dielectric constant for both ice and water. A new intermolecular polarization mechanism suitable for ice and water provides good insights for the understanding of their electrical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA