Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Reprod ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183442

RESUMO

KEY MESSAGE: Lastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005). Cotton (Gossypium hirsutum L.) is the world's most extensively cultivated fiber crop. However, its reproductive development is poorly characterized at the molecular level. Thus, this study presents a detailed transcriptomic analysis of G. hirsutum at three different reproductive stages. We provide evidence that more than 64,000 genes are active in G. hirsutum during flower development, among which 94.33% have been assigned to functional terms and specific pathways. Gene set enrichment analysis (GSEA) revealed that the biological process categories of floral organ development, pollen exine formation, and stamen development were enriched among the genes expressed during the floral development of G. hirsutum. Furthermore, we identified putative Arabidopsis homologs involved in the G. hirsutum gene regulatory network (GRN) of pollen and flower development, including transcription factors such as WUSCHEL (WUS), INNER NO OUTER (INO), AGAMOUS-LIKE 66 (AGL66), SPOROCYTELESS/NOZZLE (SPL/NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), ABORTED MICROSPORES (AMS), and ASH1-RELATED 3 (ASHR3), which are known crucial genes for plant reproductive success. The cotton MADS-box protein-protein interaction pattern resembles the previously described patterns for AGAMOUS (AG), SEEDSTICK (STK), SHATTERPROOF (SHP), and SEPALLATA3 (SEP3) homolog proteins from Arabidopsis. In addition to serving as a resource for comparative flower development studies, this work highlights the changes in gene expression profiles and molecular networks underlying stages that are valuable for cotton breeding improvement.

2.
Plant Cell Rep ; 41(7): 1589-1601, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665839

RESUMO

KEY MESSAGE: pGhERF105 and pGhNc-HARBI1 promoters are highly responsive to CBW infestation and exhibit strong activity in vegetative and reproductive tissues, increasing their potential application in GM crop plants for pest control. The main challenge to cotton (Gossypium hirsutum) crop productivity is the constant attack of several pests, including the cotton boll weevil (CBW, Anthonomus grandis), which uses cotton floral buds for feeding and egg-laying. The endophytic nature of the early developmental stages of CBW makes conventional pesticide-based control poorly efficient. Most biotechnological assets used for pest control are based on Bacillus thurigiensis insecticidal Cry toxins or the silencing of insect-pest essential genes using RNA-interference technology. However, suitable plant promoter sequences are required to efficiently drive insecticidal molecules to the target plant tissue. This study selected the Ethylene Responsive Factor 105 (GhERF105) and Harbinger transposase-derived nuclease (GhNc-HARBI1) genes based on available transcriptome-wide data from cotton plants infested by CBW larvae. The GhERF105 and GhNc-HARBI1 genes showed induction kinetics from 2 to 96 h under CBW's infestation in cotton floral buds, uncovering the potential application of their promoters. Therefore, the promoter regions (1,500 base pairs) were assessed and characterized using Arabidopsis thaliana transgenic plants. The pGhERF105 and pGhNc-HARBI1 promoters showed strong activity in plant vegetative (leaves and roots) and reproductive (flowers and fruits) tissues, encompassing higher GUS transcriptional activity than the viral-constitutive Cauliflower Mosaic Virus 35S promoter (pCaMV35S). Notably, pGhERF105 and pGhNc-HARBI1 promoters demonstrated more efficiency in driving reporter genes in flowers than other previously characterized cotton flower-specific promoters. Overall, the present study provides a new set of cotton promoters suitable for biotechnological application in cotton plants for pest resistance.


Assuntos
Arabidopsis , Gorgulhos , Animais , Arabidopsis/genética , Flores , Gossypium/genética , Controle de Pragas , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Gorgulhos/genética
3.
Planta ; 252(4): 71, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001252

RESUMO

MAIN CONCLUSION: Characterization of anther and ovule developmental programs and expression analyses of stage-specific floral marker genes in Gossypium hirsutum allowed to build a comprehensive portrait of cotton flower development before fiber initiation. Gossypium hirsutum is the most important cotton species that is cultivated worldwide. Although cotton reproductive development is important for fiber production, since fiber is formed on the epidermis of mature ovules, cotton floral development remains poorly understood. Therefore, this work aims to characterize the cotton floral morphoanatomy by performing a detailed description of anther and ovule developmental programs and identifying stage-specific floral marker genes in G. hirsutum. Using light microscopy and scanning electron microscopy, we analyzed anther and ovule development during 11 stages of flower development. To better characterize the ovule development in cotton, we performed histochemical analyses to evaluate the accumulation of phenolic compounds, pectin, and sugar in ovule tissues. After identification of major hallmarks of floral development, three key stages were established in G. hirsutum floral development: in stage 1 (early-EF), sepal, petal, and stamen primordia were observed; in stage 2 (intermediate-IF), primordial ovules and anthers are present, and the differentiating archesporial cells were observed, marking the beginning of microsporogenesis; and in stage 6 (late-LF), flower buds presented initial anther tapetum degeneration and microspore were released from the tetrad, and nucellus and both inner and outer integuments are developing. We used transcriptome data of cotton EF, IF and LF stages to identify floral marker genes and evaluated their expression by real-time quantitative PCR (qPCR). Twelve marker genes were preferentially expressed in a stage-specific manner, including the putative homologs for AtLEAFY, AtAPETALA 3, AtAGAMOUS-LIKE 19 and AtMALE STERILITY 1, which are crucial for several aspects of reproductive development, such as flower organogenesis and anther and petal development. We also evaluated the expression profile of B-class MADS-box genes in G. hirsutum floral transcriptome (EF, IF, and LF). In addition, we performed a comparative analysis of developmental programs between Arabidopsis thaliana and G. hirsutum that considered major morphoanatomical and molecular processes of flower, anther, and ovule development. Our findings provide the first detailed analysis of cotton flower development.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Gossypium , Flores/anatomia & histologia , Flores/genética , Perfilação da Expressão Gênica , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Óvulo Vegetal/genética
4.
Plant Physiol Biochem ; 127: 169-184, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29604523

RESUMO

The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mß, Mγ, and Mδ subclades. A comparative phylogenetic analysis among cotton species, Arabidopsis, poplar and grapevine MADS-box homologous genes allowed us to evaluate the evolution of each MADS-box lineage in cotton plants and identify sequences within well-established subfamilies. Chromosomal localization and phylogenetic analysis revealed that G. raimondii and G. arboreum showed a conserved evolution of the MIKC subclade and a distinct pattern of duplication events in the Mα, Mγ and Mδ subclades. Additionally, G. hirsutum showed a combination of its parental subgenomes followed by a distinct evolutionary history including gene gain and loss in each subclade. qPCR analysis revealed the expression patterns of putative homologs in the AP1, AP3, AGL6, SEP4, AGL15, AG, AGL17, TM8, SVP, SOC and TT16 subfamilies of G. hirsutum. The identification of putative cotton orthologs is discussed in the light of evolution and gene expression data from other plants. This analysis of the MADS-box genes in Gossypium species opens an avenue to understanding the origin and evolution of each gene subfamily within diploid and polyploid species and paves the way for functional studies in cotton species.


Assuntos
Diploide , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium , Proteínas de Plantas , Poliploidia , Fatores de Transcrição , Estudo de Associação Genômica Ampla , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant Reprod ; 30(1): 19-39, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28176007

RESUMO

KEY MESSAGE: Expression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development. Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum present a conserved expression profile during flower development, but also demonstrate their expression during fruit development and in response to phytohormones.


Assuntos
Genes de Plantas , Gossypium/fisiologia , Proteínas de Domínio MADS/genética , Reguladores de Crescimento de Plantas/fisiologia , Arabidopsis/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genes Reporter , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Proteínas de Domínio MADS/classificação , Filogenia , Plantas Geneticamente Modificadas , Reprodução/genética , Análise de Sequência de Proteína
6.
Plant Biotechnol J ; 15(8): 997-1009, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28081289

RESUMO

Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2-ΔΔCt analyses revealed that T0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T0 GM cotton plants, ranging from approximately 3.0 to 14.0 µg g-1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 µg g-1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Gossypium/metabolismo , Gossypium/parasitologia , Proteínas Hemolisinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Gorgulhos/patogenicidade , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/genética , Proteínas Hemolisinas/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase
7.
Genome ; 59(1): 23-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26692462

RESUMO

Cotton is one of the most economically important cultivated crops. It is the major source of natural fiber for the textile industry and an important target for genetic modification for both biotic stress and herbicide tolerance. Therefore, the characterization of genes and regulatory regions that might be useful for genetic transformation is indispensable. The isolation and characterization of new regulatory regions is of great importance to drive transgene expression in genetically modified crops. One of the major drawbacks in cotton production is pest damage; therefore, the most promising, cost-effective, and sustainable method for pest control is the development of genetically resistant cotton lines. Considering this scenario, our group isolated and characterized the promoter region of a MCO (multicopper oxidase) from Gossypium hirsutum, named GhAO-like1 (ascorbate oxidase-like1). The quantitative expression, together with the in vivo characterization of the promoter region reveals that GhAO-like1 has a flower- and fruit-specific expression pattern. The GUS activity is mainly observed in stamens, as expected considering that the GhAO-like1 regulatory sequence is enriched in cis elements, which have been characterized as a target of reproductive tissue specific transcription factors. Both histological and quantitative analyses in Arabidopsis thaliana have confirmed flower (mainly in stamens) and fruit expression of GhAO-like1. In the present paper, we isolated and characterized both in silico and in vivo the promoter region of the GhAO-like1 gene. The regulatory region of GhAO-like1 might be useful to confer tissue-specific expression in genetically modified plants.


Assuntos
Genes de Plantas , Gossypium/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Arabidopsis/genética , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Filogenia , Plantas Geneticamente Modificadas
8.
BMC Genomics ; 15: 854, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25280771

RESUMO

BACKGROUND: Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the transcriptome of cotton flower buds infested with boll weevil larvae. RESULTS: The analysis generated a total of 327,489,418 sequence reads that were aligned to the G. hirsutum reference transcriptome. The total number of expressed genes was over 21,697 per sample with an average length of 1,063 bp. The DEGseq analysis identified 443 differentially expressed genes (DEG) in cotton flower buds infected with boll weevil larvae. Among them, 402 (90.7%) were up-regulated, 41 (9.3%) were down-regulated and 432 (97.5%) were identified as orthologues of A. thaliana genes using Blastx. Mapman analysis of DEG indicated that many genes were involved in the biotic stress response spanning a range of functions, from a gene encoding a receptor-like kinase to genes involved in triggering defensive responses such as MAPK, transcription factors (WRKY and ERF) and signalling by ethylene (ET) and jasmonic acid (JA) hormones. Furthermore, the spatial expression pattern of 32 of the genes responsive to boll weevil larvae feeding was determined by "in situ" qPCR analysis from RNA isolated from two flower structures, the stamen and the carpel, by laser microdissection (LMD). CONCLUSION: A large number of cotton transcripts were significantly altered upon infestation by larvae. Among the changes in gene expression, we highlighted the transcription of receptors/sensors that recognise chitin or insect oral secretions; the altered regulation of transcripts encoding enzymes related to kinase cascades, transcription factors, Ca2+ influxes, and reactive oxygen species; and the modulation of transcripts encoding enzymes from phytohormone signalling pathways. These data will aid in the selection of target genes to genetically engineer cotton to control the cotton boll weevil.


Assuntos
Flores/genética , Perfilação da Expressão Gênica/métodos , Gossypium/genética , Herbivoria , Proteínas de Plantas/genética , Gorgulhos/fisiologia , Animais , Regulação da Expressão Gênica de Plantas , Gossypium/anatomia & histologia , Larva/patogenicidade , Filogenia , Análise de Sequência de RNA/métodos , Homologia de Sequência do Ácido Nucleico , Gorgulhos/crescimento & desenvolvimento
9.
BMC Biotechnol ; 11: 115, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22115195

RESUMO

BACKGROUND: Cotton (Gossypium spp.) is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2) family member with no previous characterization. RESULTS: Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2) and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. CONCLUSIONS: uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2) and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues.


Assuntos
Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/enzimologia , Regiões Promotoras Genéticas/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Arabidopsis , Sequência de Bases , Códon sem Sentido/genética , Primers do DNA/genética , Flores/metabolismo , Fluorometria , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de DNA , Transgenes/genética , Enzimas de Conjugação de Ubiquitina/genética
10.
BMC Plant Biol ; 10: 49, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20302670

RESUMO

BACKGROUND: Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. RESULTS: By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. CONCLUSION: We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs; GhACT4 and GhUBQ14 for flower development, GhACT4 and GhFBX6 for the floral organs and GhMZA and GhPTB for fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton.


Assuntos
Genes de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Algoritmos , DNA Complementar/genética , Flores/genética , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Especificidade de Órgãos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA