RESUMO
Prosthetic joint infection (PJI) is a major complication following total arthroplasty. Rising antimicrobial resistance (AMR) to antibiotics will further increase therapeutic insufficiency. New antibacterial technologies are being developed to prevent PJI. In vivo models are still needed to bridge the translational gap to clinical implementation. Though rabbit models have been used most frequently, there is no consensus about methodology and measured outcomes. The PubMed, Scopus, and EMBASE databases were searched for literature on PJI in rabbit models. Data extraction included bias control, experimental design, and outcome measures of the NZW rabbit models in the articles. A total of 60 articles were included in this systematic literature review. The articles were divided into six groups based on the PJI intervention: no intervention used (21%), revision surgery (14%), prevention with only antibiotics (21%), prevention with surface modifications (7%), prevention with coatings (23%), and others (14%). Despite the current availability of guidelines and recommendations regarding experimental design, bias control, and outcome measures, many articles neglect to report on these matters. Ultimately, this analysis aims to assist researchers in determining suitable clinically relevant methodologies and outcome measures for in vivo PJI models using NZW rabbits to test new antimicrobial technologies.
RESUMO
Quorum sensing (QS) is a complex communication system in bacteria, directing their response to the environment. QS is also one of the main regulators of bacterial biofilms' formation, maturation and dispersion. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) is a molecular imaging technique that allows the mapping of QS molecules in bacterial biofilms. Here, we highlight the latest advances in MALDI-MSI in recent years and how this technology can improve QS understanding at the molecular level.
RESUMO
STUDY DESIGN: Systematic review. OBJECTIVE: Examine the clinical evidence for the use of osteobiologics in hybrid surgery (combined anterior cervical discectomy and fusion (ACDF) and total disc replacement (TDR)) in patients with multilevel cervical degenerative disc disease (DDD). METHODS: PubMed and Embase were searched between January 2000 and August 2020. Clinical studies investigating 18-80 year old patients with multilevel cervical DDD who underwent hybrid surgery with or without the use of osteobiologics were considered eligible. Two reviewers independently screened and assessed the identified articles. The methodological index for non-randomized studies (MINORS) tool and the risk of bias (RoB 2.0) assessment tool were used to assess risk of bias. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to evaluate quality of evidence across studies per outcome. RESULTS: Eleven studies were included. A decrease in cervical range of motion was observed in most studies for both the hybrid surgery and the control groups consisting of stand-alone ACDF or TDR. Fusion rates of 70-100% were reported in both the hybrid surgery and control groups consisting of stand-alone ACDF. The hybrid surgery group performed better or comparable to the control group in terms of adjacent segment degeneration. Studies reported an improvement in visual analogue scale for pain and neck disability index values after surgery compared to preoperative scores for both treatment groups. The included studies had moderate methodological quality. CONCLUSIONS: There is insufficient evidence for assessing the use of osteobiologics in multilevel hybrid surgery and additional high quality and controlled research is deemed essential.
RESUMO
STUDY DESIGN: Guideline. OBJECTIVES: To develop an international guideline (AOGO) about the use of osteobiologics in anterior cervical discectomy and fusion (ACDF) for treating degenerative spine conditions. METHODS: The guideline development process was guided by AO Spine Knowledge Forum Degenerative (KF Degen) and followed the Guideline International Network McMaster Guideline Development Checklist. The process involved 73 participants with expertise in degenerative spine diseases and surgery from 22 countries. Fifteen systematic reviews were conducted addressing respective key topics and evidence was collected. The methodologist compiled the evidence into GRADE Evidence-to-Decision frameworks. Guideline panel members judged the outcomes and other criteria and made the final recommendations through consensus. RESULTS: Five conditional recommendations were created. A conditional recommendation is about the use of allograft, autograft or a cage with an osteobiologic in primary ACDF surgery. Other conditional recommendations are about the use of osteobiologic for single- or multi-level ACDF, and for hybrid construct surgery. It is suggested that surgeons use other osteobiologics rather than human bone morphogenetic protein-2 (BMP-2) in common clinical situations. Surgeons are recommended to choose 1 graft over another or 1 osteobiologic over another primarily based on clinical situation, and the costs and availability of the materials. CONCLUSION: This AOGO guideline is the first to provide recommendations for the use of osteobiologics in ACDF. Despite the comprehensive searches for evidence, there were few studies completed with small sample sizes and primarily as case series with inherent risks of bias. Therefore, high-quality clinical evidence is demanded to improve the guideline.
RESUMO
STUDY DESIGN: Systematic review. OBJECTIVES: The study's primary objective was to determine how osteobiologic choice affects fusion rates in patients undergoing anterior cervical discectomy and fusion (ACDF). The study's secondary objectives were to 1) determine the optimal timing of fusion assessment following ACDF and 2) determine if osteobiologic type affects the timing and optimal modality of fusion assessment. METHODS: A systematic search of PubMed/MEDLINE was conducted for literature published from 2000 through October 2020 comparing anterior fusion in the cervical spine with various osteobiologics. Both comparative studies and case series of ≥10 patients were included. RESULTS: A total of 74 studies met the inclusion criteria. Seventeen studies evaluated the efficacy of autograft on fusion outcomes, and 23 studies assessed the efficacy of allograft on fusion outcomes. 3 studies evaluated the efficacy of demineralized bone matrix, and seven assessed the efficacy of rhBMP-2 on fusion outcomes. Other limited studies evaluated the efficacy of ceramics and bioactive glasses on fusion outcomes, and 4 assessed the efficacy of stem cell products. Most studies utilized dynamic radiographs for the assessment of fusion. Overall, there was a general lack of supportive data to determine the optimal timing of fusion assessment meaningfully or if osteobiologic type influenced fusion timing. CONCLUSIONS: Achieving fusion following ACDF appears to remain an intricate interplay between host biology and various surgical factors, including the selection of osteobiologics. While alternative osteobiologics to autograft exist and may produce acceptable fusion rates, limitations in study methodology prevent any definitive conclusions from existing literature.
RESUMO
Diabetes affected 537 million adults in 2021, costing a total of USD 966 billion dollars in healthcare. One of the most common complications associated with diabetes corresponds to the development of diabetic foot ulcers (DFUs). DFUs affect around 15% of diabetic patients; these ulcers have impaired healing due to neuropathy, arterial disease, infection, and aberrant extracellular matrix (ECM) degradation, among other factors. The bioactive-glass-based materials discussed in this systematic review show promising results in accelerating diabetic wound healing. It can be concluded that the addition of BG is extremely valuable with regard to the wound healing rate and wound healing quality, since BG activates fibroblasts, enhances M1-to-M2 phenotype switching, induces angiogenesis, and initiates the formation of granulation tissue and re-epithelization of the wound. In addition, a higher density and deposition and better organization of collagen type III are seen. This systematic review was made using the PRISMA guideline and intends to contribute to the advancement of diabetic wound healing therapeutic strategies development by providing an overview of the materials currently being developed and their effect in diabetic wound healing in vitro and in vivo.
Assuntos
Diabetes Mellitus , Pé Diabético , Adulto , Humanos , Cicatrização , Pé Diabético/terapia , Tecido de Granulação , Colágeno Tipo III , FibroblastosRESUMO
INTRODUCTION: Dead space management following debridement surgery in chronic osteomyelitis or septic non-unions is one of the most crucial and discussed steps for the success of the surgical treatment of these conditions. In this retrospective clinical study, we described the efficacy and safety profile of surgical debridement and local application of S53P4 bioactive glass (S53P4 BAG) in the treatment of bone infections. METHODS: A consecutive single-center series of 38 patients with chronic osteomyelitis (24) and septic non-unions (14), treated with bioactive glass S53P4 as dead space management following surgical debridement between May 2015 and November 2020, were identified and evaluated retrospectively. RESULTS: Infection eradication was reached in 22 out of 24 patients (91.7%) with chronic osteomyelitis. Eleven out of 14 patients (78.6%) with septic non-union achieved both fracture healing and infection healing in 9.1 ± 4.9 months. Three patients (7.9%) developed prolonged serous discharge with wound dehiscence but healed within 2 months with no further surgical intervention. Average patient follow-up time was 19.8 months ± 7.6 months. CONCLUSION: S53P4 bioactive glass is an effective and safe therapeutic option in the treatment of chronic osteomyelitis and septic non-unions because of its unique antibacterial properties, but also for its ability to generate a growth response in the remaining healthy bone at the bone-glass interface.
Assuntos
Substitutos Ósseos , Osteomielite , Humanos , Estudos Retrospectivos , Substitutos Ósseos/uso terapêutico , Antibacterianos/uso terapêutico , Infecção Persistente , Osteomielite/tratamento farmacológico , Osteomielite/cirurgia , Osteomielite/microbiologiaRESUMO
In vitro and in vivo studies are critical for the preclinical efficacy assessment of novel therapies targeting musculoskeletal infections (MSKI). Many preclinical models have been developed and applied as a prelude to evaluating safety and efficacy in human clinical trials. In performing these studies, there is both a requirement for a robust assessment of efficacy, as well as a parallel responsibility to consider the burden on experimental animals used in such studies. Since MSKI is a broad term encompassing infections varying in pathogen, anatomical location, and implants used, there are also a wide range of animal models described modeling these disparate infections. Although some of these variations are required to adequately evaluate specific interventions, there would be enormous value in creating a unified and standardized criteria to animal testing in the treatment of MSKI. The Treatment Workgroup of the 2023 International Consensus Meeting on Musculoskeletal Infection was responsible for questions related to preclinical models for treatment of MSKI. The main objective was to review the literature related to priority questions and estimate consensus opinion after voting. This document presents that process and results for preclinical models related to (1) animal model considerations, (2) outcome measurements, and (3) imaging.
Assuntos
Projetos de Pesquisa , Animais , Humanos , Consenso , Modelos AnimaisRESUMO
BACKGROUND: Proximal junctional failure is a common complication attributed to the rigidity of long pedicle screw fixation constructs used for surgical correction of adult spinal deformity. Semi-rigid junctional fixation achieves a gradual transition in range of motion at the ends of spinal instrumentation, which could lead to reduced junctional stresses, and ultimately reduce the incidence of proximal junctional failure. This study investigates the biomechanical effect of different semi-rigid junctional fixation techniques in a T8-L3 finite element spine segment model. METHODS: First, degeneration of the intervertebral disc was successfully implemented by altering the height. Second, transverse process hooks, one- and two-level clamped tapes, and one- and two-level knotted tapes instrumented proximally to three-level pedicle screw fixation were validated against ex vivo range of motion data of a previous study. Finally, the posterior ligament complex forces and nucleus pulposus stresses were quantified. FINDINGS: Simulated range of motions demonstrated the fidelity of the general model and modelling of semi-rigid junctional fixation techniques. All semi-rigid junctional fixation techniques reduced the posterior ligament complex forces at the junctional zone compared to pedicle screw fixation. Transverse process hooks and knotted tapes reduced nucleus pulposus stresses, whereas clamped tapes increased nucleus pulposus stresses at the junctional zone. INTERPRETATION: The relationship between the range of motion transition and the reductions in posterior ligament complex and nucleus pulposus stresses was complex and dependent on the fixation techniques. Clinical trials are required to compare the effectiveness of semi-rigid junctional fixation techniques in terms of reducing proximal junctional failure incidence rates.
Assuntos
Parafusos Pediculares , Procedimentos de Cirurgia Plástica , Adulto , Humanos , Análise de Elementos Finitos , Movimento (Física) , Amplitude de Movimento ArticularRESUMO
Background: Adolescent idiopathic scoliosis (AIS) has an estimated general population prevalence of 2% to 3%. The impact of adolescent idiopathic scoliosis (AIS) on the patients' experienced quality of life and psychological well-being and the resulting societal burden are increasingly recognized. However, there is limited knowledge on the economic burden of AIS. This cross-sectional, prevalence-based, bottom-up approach burden of disease study aims to determine the impact associated with adolescent idiopathic scoliosis in terms of the cost-of-illness and health-related quality of life from a societal perspective in the Netherlands. Methods: Persons diagnosed with AIS or parents of a child with AIS that are willing and able to answer the questionnaires will be eligible to participate. Patients will be included consecutively between June until January 2023. Costs and self-perceived health-related quality of life will be estimated using 3 steps: identification, measurement and valuation. To assess the costs associated with AIS the institute for Medical Technology Assessment - Medical Consumption Questionnaire and the institute for Medical Technology Assessment - Productivity Cost Questionnaire will be used. To assess the HRQoL of adult AIS patients the EuroQol 5-dimensions or EuroQol 5-dimensions Youth questionnaire for children under the age of 12 and the Scoliosis Research Society-22 revised questionnaire will be considered. Discussion: This is the first study in this field. It will help raise awareness for AIS and wider support for both the patient community and informal care takers among healthcare professionals and policymakers. Major strengths of this study will be the use of mostly validated, standardized questionnaires. Limitations include the cross-sectional and retrospective nature of the study design.
RESUMO
BACKGROUND: Malalignment is often postulated as an important reason for the high failure rate of total ankle replacements (TARs). The correlation between TAR malalignment and clinical outcome, however, is not fully understood. Improving and expanding radiographic TAR alignment measurements in the clinic might lead to a better insight into the correlation between malalignment and the clinical outcome. This study aims to develop and validate a tool to semi-automatic measure TAR alignment, and to improve alignment measurements on radiographs in the clinic. METHODS: A tool to semi-automatically measure TAR alignment on anteroposterior and lateral radiographs was developed in MATLAB. Using the principle of edge contouring and the perpendicular relationship between the anteroposterior and lateral radiographs, the exact configuration of the TAR components can be found. Two observers validated the tool by measuring TAR alignment of ten patients using the tool. The Intraclass Coefficient (ICC) was calculated to assess the reliability of the developed method. The results obtained by the tool were compared to clinical results during radiographic follow-up in the past, and the accuracy of both methods was calculated using three-dimensional CT data. RESULTS: The tool showed an accuracy of 76% compared to 71% for the method used during follow-up. ICC values were 0.94 (p < 0.01) and higher for both inter-and intra-observer reliability. CONCLUSIONS: The tool presents a reproducible method to measure TAR alignment parameters. Three-dimensional alignment parameters are obtained from two-dimensional radiographs, and as the tool can be applied to most TAR designs, it offers a valuable addition in the clinic and for research purposes.
Assuntos
Articulação do Tornozelo , Artroplastia de Substituição do Tornozelo , Humanos , Articulação do Tornozelo/diagnóstico por imagem , Reprodutibilidade dos Testes , Artroplastia de Substituição do Tornozelo/métodos , RadiografiaRESUMO
In this systematic review, the antimicrobial effect of ion-substituted calcium phosphate biomaterials was quantitatively assessed. The literature was systematically searched up to the 6th of December 2021. Study selection and data extraction was performed in duplo by two independent reviewers with a modified version of the OHAT tool for risk of bias assessment. Any differences were resolved by consensus or by a referee. A mixed effects model was used to investigate the relation between the degree of ionic substitution and bacterial reduction. Of 1016 identified studies, 108 were included in the analysis. The methodological quality of included studies ranged from 6 to 16 out of 18 (average 11.4). Selenite, copper, zinc, rubidium, gadolinium, silver and samarium had a clear antimicrobial effect, with a log reduction in bacteria count of 0.23, 1.8, 2.1, 3.6, 5.8, 7.4 and 10 per atomic% of substitution, respectively. There was considerable between-study variation, which could partially be explained by differences in material formulation, study quality and microbial strain. Future research should focus on clinically relevant scenarios in vitro and the translation to in vivo prevention of PJI.
RESUMO
BACKGROUND: Total ankle arthroplasty is increasingly used as a treatment for end stage ankle arthropathy. The aim of this study was to report the mid-term clinical function and survival results of Ceramic Coated Implant (CCI) ankle replacements and assess the association between the alignment of the CCI total ankle replacements and early functional outcome and complication incidence. METHODS: Data of 61 patients, who received 65 CCI implants between 2010 and 2016, were obtained from a prospectively documented database. Mean follow-up time was 85.2 months (range 27-99 months). Clinical function was assessed with AOFAS questionnaire and passive range of motion (ROM). Survival analysis and elaborate radiographic analysis was performed. Furthermore, complications and reoperations were recorded for all patients. RESULTS: Progression in ROM was most seen in the first 10 months from 21.8 degrees of passive range of motion preoperative to 27.6 degrees postoperative (p < 0.001), while the mean AOFAS gradually increased during follow-up postoperative from a mean of 40.9 points preoperative to an average of 82.5 but shows a small decline towards the end of follow-up (p < 0.001). During follow-up we recorded 8 failures (12.3%) resulting in a Kaplan-Meier survival analysis of 87.7% with a median follow-up of 85.2 months. CONCLUSION: We observed excellent clinical results and survival after TAA with the CCI implant with only a low mid-term complication rate. LEVEL OF EVIDENCE: Level III, prospective cohort study.
Assuntos
Artroplastia de Substituição do Tornozelo , Humanos , Artroplastia de Substituição do Tornozelo/efeitos adversos , Artroplastia de Substituição do Tornozelo/métodos , Estudos Prospectivos , Incidência , Articulação do Tornozelo/cirurgia , Tornozelo/cirurgia , Resultado do Tratamento , Estudos RetrospectivosRESUMO
BACKGROUND: Magnetic resonance imaging (MRI) and 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) Positron Emission Tomography, paired with Computed Tomography (PET/CT) are commonly used modalities in the complicated diagnostic work-up of osteomyelitis. PET/MRI is a relatively novel hybrid modality with suggested applications in bone infection imaging, based on expert opinion and previous qualitative research. 18F-FDG PET/MRI has the advantages of reduced radiation dose, more soft tissue information, and is deemed more valuable for surgical planning compared to 18F-FDG PET/CT. The goal of this study is to quantitatively assess the diagnostic value of hybrid 18F-FDG PET/MRI for chronic osteomyelitis. METHODS: A retrospective analysis was performed by a nuclear medicine physician and radiologist on 36 patients with 18F-FDG PET/MRI scans for suspected osteomyelitis. Sensitivity, specificity, and accuracy were determined with the clinical assessment by the orthopaedic surgeon (based on subsequent intraoperative microbiology or long-term follow-up) as the ground truth. Standardized uptake values (SUV) were measured and analysed by means of receiver operating characteristics (ROC). RESULTS: This first study to quantitatively report the diagnostic value of 18F-FDG PET/MRI yielded a sensitivity, specificity, and accuracy of 78%, 100%, and 86% respectively. Area under the ROC curve was .736, .755, and .769 for the SUVmax, target to background ratio, and SUVmax_ratio respectively. These results are in the same range and not statistically different compared to diagnostic value for 18F-FDG PET/CT imaging of osteomyelitis in literature. CONCLUSIONS: Based on the aforementioned advantages of 18F-FDG PET/MRI and the diagnostic value reported here, the authors propose 18F-FDG PET/MRI as an alternative to 18F-FDG PET/CT in osteomyelitis diagnosis, if available.
RESUMO
INTRODUCTION: Malalignment of the Total Ankle Replacement (TAR) has often been postulated as the main reason for the high incidence of TAR failure. As the ankle joint has a small contact area, stresses are typically high, and malalignment may lead to non-homogeneous stress distributions, including stress peaks that may initiate failure. This study aims to elucidate the effect of TAR malalignment on the contact stresses on the bone-implant interface, thereby gaining more understanding of the potential role of malalignment in TAR failure. METHODS: Finite Element (FE) models of the neutrally aligned as well as malaligned CCI (Ceramic Coated Implant) Evolution TAR implant (Van Straten Medical) were developed. The CCI components were virtually inserted in a generic three-dimensional (3D) reconstruction of the tibia and talus. The tibial and talar TAR components were placed in neutral alignment and in 5° and 10° varus, valgus, anterior and posterior malalignment. Loading conditions of the terminal stance phase of the gait cycle were applied. Peak contact pressure and shear stress at the bone-implant interface were simulated and stress distributions on the bone-implant interface were visualized. RESULTS: In the neutral position, a peak contact pressure and shear stress of respectively 98.4 MPa and 31.9 MPa were found on the tibial bone-implant interface. For the talar bone-implant interface, this was respectively 68.2 MPa and 39.0 MPa. TAR malalignment increases peak contact pressure and shear stress on the bone-implant interface. The highest peak contact pressure of 177 MPa was found for the 10° valgus malaligned tibial component, and the highest shear stress of 98.5 MPa was found for the 10° posterior malaligned talar model. High contact stresses were mainly located at the edges of the bone-implant interface and the fixation pegs of the talar component. CONCLUSIONS: The current study demonstrates that TAR malalignment leads to increased peak stresses. High peak stresses could contribute to bone damage and subsequently reduced implant fixation, micromotion, and loosening. Further research is needed to investigate the relationship between increased contact stresses at the bone-implant interface and TAR failure.
Assuntos
Artroplastia de Substituição do Tornozelo , Articulação do Tornozelo/cirurgia , Artroplastia de Substituição do Tornozelo/efeitos adversos , Artroplastia de Substituição do Tornozelo/métodos , Fenômenos Biomecânicos , Interface Osso-Implante , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Tíbia/cirurgiaRESUMO
STUDY DESIGN: Preclinical ovine model. OBJECTIVE: To assess the in vivo efficacy and safety of the P-15 L bone graft substitute and compare its performance to autologous iliac crest bone graft (ICBG) for lumbar interbody fusion indications. METHODS: Thirty skeletally mature sheep underwent lumbar interbody fusion surgery. Half of the sheep received autologous ICBG and the other half the peptide enhanced bone graft substitute (P-15 L). Following termination at 1, 3, and 6 months after surgery, the operated segments were analyzed using micro computed tomography (µCT), histology, and destructive mechanical testing. Additional systemic health monitoring was performed for the P-15 L group. RESULTS: One month after surgery, there was only minor evidence of bone remodeling and residual graft material could be clearly observed within the cage. There was active bone remodeling between 1 and 3 months after surgery. At 3 months after surgery significantly denser and stiffer bone was found in the P-15 L group, whereas at 6 months, P-15 L and ICBG gave similar fusion results. The P-15 L bone graft substitute did not have any adverse effects on systemic health. CONCLUSIONS: The drug device combination P-15 L was demonstrated to be effective and save for lumbar interbody fusion as evidenced by this ovine model. Compared to autologous ICBG, P-15 L seems to expedite bone formation and remodeling but in the longer-term fusion results were similar.
RESUMO
INTRODUCTION: Although computed tomography (CT) can identify the presence of eventual bony bridges following lumbar interbody fusion (LIF) surgery, it does not provide information on the ongoing formation process of new bony structures. 18F sodium fluoride (18F-NaF) positron emission tomography (PET) could be used as complementary modality to add information on the bone metabolism at the fusion site. However, it remains unknown how bone metabolism in the operated segment changes early after surgery in uncompromised situations. This study aimed to quantify the changes in local bone metabolism during consolidation of LIF. MATERIALS AND METHODS: Six skeletally mature sheep underwent LIF surgery. 18F-NaF PET/CT scanning was performed 6 and 12 weeks postoperatively to quantify the bone volume and metabolism in the operated segment. Bone metabolism was expressed as a function of bone volume. RESULTS: Early in the fusion process, bone metabolism was increased at the endplates of the operated vertebrae. In a next phase, bone metabolism increased in the center of the interbody region, peaked, and declined to an equilibrium state. During the entire postoperative time period of 12 weeks, bone metabolism in the interbody region was higher than that of a reference site in the spinal column. CONCLUSION: Following LIF surgery, there is a rapid increase in bone metabolism at the vertebral endplates that develops towards the center of the interbody region. Knowing the local bone metabolism during uncompromised consolidation of spinal interbody fusion might enable identification of impaired bone formation early after LIF surgery using 18F-NaF PET/CT scanning.
Assuntos
Vértebras Lombares , Fusão Vertebral , Animais , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Osteogênese , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ovinos , Tomografia Computadorizada por Raios XRESUMO
STUDY DESIGN: A porcine cadaveric biomechanical study. OBJECTIVE: To biomechanically evaluate a novel Cable Anchor System as semi-rigid junctional fixation technique for the prevention of proximal junctional failure after adult spinal deformity surgery and to make a comparison to alternative promising prophylactic techniques. SUMMARY OF BACKGROUND DATA: The abrupt change of stiffness at the proximal end of a pedicle screw construct is a major risk factor for the development of proximal junctional failure after adult spinal deformity surgery. A number of techniques that aim to provide a gradual transition zone in range of motion (ROM) at the proximal junction have previously been studied. In this study, the design of a novel Cable Anchor System, which comprises a polyethylene cable for rod fixation, is assessed. METHODS: Ten T6-T13 porcine spine segments were subjected to cyclic 4 Nm pure-moment loading. The following conditions were tested: uninstrumented, 3 level pedicle screw fixation (PSF), and PSF with supplementary Cable Anchors applied proximally at 1-level (Anchor1) or 2-levels (Anchor2), transverse process hooks (TPH), and 2-level sublaminar tapes (Tape2). The normalized segmental range of motion in the junctional zone was compared using one-way analysis of variance and linear regression. RESULTS: Statistical comparison at the level proximal to PSF showed significantly lower ROMs for all techniques compared to PSF fixation alone in all movement directions. Linear regression demonstrated a higher linearity for Anchor1 (0.820) and Anchor2 (0.923) in the junctional zone in comparison to PSF (1-level: 0.529 and 2-level: 0.421). This linearity was similar to the compared techniques (TPH and Tape2). CONCLUSION: The Cable Anchor System presented in this study demonstrated a gradual ROM transition zone at the proximal end of a rigid pedicle screw construct similar to TPH and 2-level sublaminar tape semi-rigid junctional fixation constructs, while providing the benefit of preserving the posterior ligament complex.Level of Evidence: 5.
Assuntos
Parafusos Pediculares , Fusão Vertebral , Animais , Fenômenos Biomecânicos , Humanos , Procedimentos Neurocirúrgicos , Amplitude de Movimento Articular , Fusão Vertebral/métodos , SuínosRESUMO
BACKGROUND CONTEXT: Lumbar interbody fusion is an effective treatment for unstable spinal segments. However, the time needed to establish a solid bony interbody fusion between the two vertebrae may be longer than twelve months after surgery. During this time window, the instrumented spinal segment is assumed to be at increased risk for instability related complications such as cage migration or subsidence. It is hypothesized that the design of new interbody cages that enable direct osseointegration of the cage at the vertebral endplates, without requiring full bony fusion between the two vertebral endplates, might shorten the time window that the instrumented spinal segment is susceptible to failure. PURPOSE: To quantify the bone ingrowth and resulting segmental stability during consolidation of lumbar interbody fusion using two different cage types. STUDY DESIGN: Preclinical ovine model. METHODS: Seven skeletally mature sheep underwent bi-segmental lumbar interbody fusion surgery with one conventional polyether ether ketone (PEEK) cage, and one newly developed trussed titanium (TT) cage. After a postoperative time period of 13 weeks, non-destructive range of motion testing, and histologic analysis was performed. Additionally, sample specific finite element (FE) analysis was performed to predict the stability of the interbody fusion region alone. RESULTS: Physiological movement of complete spinal motion segments did not reveal significant differences between the segments operated with PEEK and TT cages. The onset of creeping substitution within the cage seemed to be sooner for PEEK cages, which led to significantly higher bone volume over total volume (BV/TV) compared with the TT cages. TT cages showed significantly more direct bone to implant contact (BIC). Although the mean stability of the interbody fusion region alone was not statistically different between the PEEK and TT cages, the variation within the cage types illustrated an all-or-nothing response for the PEEK cages while a more gradual increase in stability was found for the TT cages. CONCLUSIONS: Spinal segments operated with conventional PEEK cages were not different from those operated with newly developed TT cages in terms of segmental stability but did show a different mechanism of bone ingrowth and attachment. Based on the differences in development of bony fusion, we hypothesize that TT cages might facilitate increased early segmental stability by direct osseointegration of the cage at the vertebral endplates without requiring complete bony bridging through the cage. CLINICAL SIGNIFICANCE: Interbody cage type affects the consolidation process of spinal interbody fusion. Whether different consolidation processes of spinal interbody fusion result in clinically significant differences requires further investigation.