Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Curr Probl Cardiol ; 49(1 Pt B): 102071, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690535

RESUMO

One of the primary reasons for complications and death worldwide are cardiovascular diseases (CVDs), with a death toll of approximately 18 million per year. CVDs include cardiomyopathy, hypertension, ischemic heart disease, coronary heart disease, myocardial infarction, heart attack, hearth failure, etc. Over 80% of the CVD mortality is recorded from lower and middle-income countries. Records from the past decade have highlighted the increase of CVDs among the South Asian populations, and the prime purpose of the review is to jot down the reasons for the steep spike in CVDs. Studies analyzing the causative factors for the increase of CVDs in South Asians are still to be verified. Apart from known predisposing and lifestyle factors, other emerging risk factors associated with CVDs, namely the musculoskeletal diseases sarcopenia and osteopenia, should be tracked to tackle research gaps in upcoming analyses. This requires loads of scientific efforts. With proper monitoring, the raising alarm that the CVD burden generates can be reduced. This review discusses the already established signs and recognizes important clues to the emerging etiology of CVDs in the Asian population and prevention measures to keep it at bay.


Assuntos
Doenças Ósseas Metabólicas , Doenças Cardiovasculares , Infarto do Miocárdio , Osteoporose , Sarcopenia , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Prevalência , Sarcopenia/epidemiologia , Sarcopenia/complicações , Fatores de Risco , Osteoporose/epidemiologia , Osteoporose/complicações , Doenças Ósseas Metabólicas/complicações
2.
Front Biosci (Landmark Ed) ; 28(8): 169, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37664941

RESUMO

BACKGROUND: Methods like the bio-synthesis of silver nanoparticles (Ag NPs) using plant extracts have become promising due to their eco-friendly approach. The study aimed to examine the utilization of Garcinia gummi-gutta fruit phytochemicals as agents in the biosynthesis of Ag NPs, evaluation of the antimicrobial, antioxidant, and anti-cancerous properties, as well as the photocatalytic ability of bio-synthesized Ag NPs against Crystal Violet (CV), a triphenylmethane dye. METHODS: The characterization of the physical properties of the Ag NPs synthesized via the green route was done using UV-Vis spectrophotometry (UV-Vis), X-ray Diffraction (XRD), Fourier Transform Infrared Spectrophotometry (FTIR), Scanning Electron Microscopy (SEM), Zeta potential analysis, and Transmission Electron Microscopy (TEM). The dye degradation efficiency of CV was determined using synthesized Ag NPs under UV light by analyzing the absorption maximum at 579 nm. The antimicrobial efficacy of Ag NPs against E. coli, S. aureus, Candida tropicalis, and Candida albicans was examined using the broth dilution method. The antioxidant and anti-cancer properties of the synthesized Ag NPs were assessed using the DPPH and MTT assays. RESULTS: The UV analysis revealed that the peak of synthesized Ag NPs was 442 nm. Data from FTIR, XRD, Zeta potential, SEM, and TEM analysis confirmed the formation of nanoparticles. The SEM and TEM analysis identified the presence of spherical nanoparticles with an average size of 29.12 nm and 24.18 nm, respectively. Maximum dye degradation efficiency of CV was observed at 90.08% after 320 min without any silver leaching, confirming the photocatalytic activity of Ag NPs. The bio-efficiency of the treatment was assessed using the Allium cepa root growth inhibition test, toxicity analysis on Vigna radiata, and Brine shrimp lethality assay. CONCLUSIONS: The findings revealed the environmentally friendly nature of green Ag NPs over physical/chemically synthesized Ag NPs. The synthesized Ag NPs can effectively be used in biomedical and photocatalytic applications.


Assuntos
Anti-Infecciosos , Garcinia , Nanopartículas Metálicas , Neoplasias , Antioxidantes/farmacologia , Prata/farmacologia , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Violeta Genciana
3.
Artigo em Inglês | MEDLINE | ID: mdl-37295316

RESUMO

Nutrition plays a major role in the healthy pregnancy and development of the fetus. In addition, nutrition can expose humans to a wide range of potentially hazardous environmental constituents, such as organic pollutants and heavy metals from marine or agricultural food products while processing, producing, and packaging. Humans constantly face these constituents through air, water, soil, food, and domestic products. During pregnancy, the rate of cellular division and differentiation is higher; exposure to any of these environmental toxicants can lead to developmental defects as they cross the placental barrier and, in some cases, can harm the successive generation too, as some contaminants can act on the reproductive cells of the fetus (Diethylstilbestrol). Pregnant women are considered a vulnerable population to food contaminant exposure and require a proper dietary chart and conscious food choices. Food is a source of both essential nutrients and environmental toxicants. Here, we have researched the possible toxicants of the food industry and their influence on the fetus's in-utero development, along with the importance of dietary interventions and the need to balance a healthy diet to overcome the harms. The cumulative exposure to environmental toxicants can influence the mother's prenatal environment and affect the fetus's development.


Assuntos
Poluentes Ambientais , Placenta , Feminino , Gravidez , Humanos , Substâncias Perigosas , Poluentes Ambientais/toxicidade , Desenvolvimento Fetal
4.
Antibiotics (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107050

RESUMO

The main objective of the present research work is to assess the biological properties of the aqueous plant extract (ACAE) synthesised silver nanoparticles from the herbal plant Ageratum conyzoides, and their biological applications. The silver nanoparticle syntheses from Ageratum conyzoides (Ac-AgNPs) were optimised with different parameters, such as pH (2, 4, 6, 8 and 10) and varied silver nitrate concentration (1 mM and 5 mM). Based on the UV-vis spectroscopy analysis of the synthesised silver nanoparticles, the concentration of 5 mM with the pH at 8 was recorded as the peak reduction at 400 nm; and these conditions were optimized were used for further studies. The results of the FE-SEM analysis recorded the size ranges (~30-90 nm), and irregular spherical and triangular shapes of the AC-AgNPs were captured. The characterization reports of the HR-TEM investigation of AC-AgNPs were also in line with the FE-SEM studies. The antibacterial efficacies of AC-AgNPs have revealed the maximum zone of inhibition against S. typhi to be within 20 mm. The in vitro antiplasmodial activity of AC-AgNPs is shown to have an effective antiplasmodial property (IC50:17.65 µg/mL), whereas AgNO3 has shown a minimum level of IC50: value 68.03 µg/mL, and the Ac-AE showed >100 µg/mL at 24 h of parasitaemia suppression. The α-amylase inhibitory properties of AC-AgNPs have revealed a maximum inhibition similar to the control Acarbose (IC50: 10.87 µg/mL). The antioxidant activity of the AC-AgNPs have revealed a better property (87.86% ± 0.56, 85.95% ± 1.02 and 90.11 ± 0.29%) when compared with the Ac-AE and standard in all the three different tests, such as DPPH, FRAP and H2O2 scavenging assay, respectively. The current research work might be a baseline for the future drug expansion process in the area of nano-drug design, and its applications also has a lot of economic viability and is a safer method in synthesising or producing silver nanoparticles.

5.
Asian Pac J Cancer Prev ; 24(2): 357-361, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853282

RESUMO

INTRODUCTION: The most significant industrial utilization of carbon disulfide (CS2) has been in the manufacture of cellulose rayon, cellophane, and rubber industry. CS2 prompts expanded recurrence of chromosomal variations in laborers occupationally exposed to CS2. MATERIALS AND METHODS: In the current study, the DNA analysis was carried out from exfoliated buccal epithelial cells from rubber industry workers exposed to CS2 and an equal number of healthy control subjects. Both the control and experimental subjects were categorized by their smoking habits such as smokers (S) and non-smokers (NS). Furthermore, experimental subjects were further separated based on their exposure period. Students t-test statistical tools were used to analyze the final results. RESULTS: The present analysis identified a high frequency of DNA damage in rubber industry workers (16.55±0.43) than control subjects (9.8±0.21). Also, maximum number of DNA damage detected in smoking experimental group (18.27±0.02) than non-smoking experimental (15.02±0.01) and smoking control groups (10.25±0.04 ). CONCLUSION: Smoking habits synergistically increased the DNA damage in the rubber industry workers exposed to CS2.


Assuntos
Dissulfeto de Carbono , Humanos , Dissulfeto de Carbono/efeitos adversos , Borracha/efeitos adversos , Dano ao DNA , Comércio , Células Epiteliais
6.
Appl Biochem Biotechnol ; 195(7): 4429-4446, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36701091

RESUMO

The limitations of graft material, and surgical sites for autografts in bone defects treatment have become a significant challenge in bone tissue engineering. Phytocompounds markedly affect bone metabolism by activating the osteogenic signaling pathways. The present study investigated the biocompatibility of the bio-composite thermo-responsive hydrogels consisting of chitosan (CS), and methylcellulose (MC) encapsulated with veratric acid (VA) as a restorative agent for bone defect treatment. The spectroscopy analyses confirmed the formation of CS/MC hydrogels and VA encapsulated CS/MC hydrogels (CS/MC-VA). Molecular analysis of the CS-specific MC decamer unit with VA complex exhibited a stable integration in the system. Further, Runx2 (runt-related transcription factor 2) was found in the docking mechanism with VA, indicating a high binding affinity towards the functional site of the Runx2 protein. The formulated CS/MC-VA hydrogels exhibited biocompatibility with the mouse mesenchymal stem cells, while VA promoted osteogenic differentiation in the stem cells, which was verified by calcium phosphate deposition through the von Kossa staining. The study results suggest that CS/MC-VA could be a potential therapeutic alternative source for bone regeneration.


Assuntos
Quitosana , Osteogênese , Camundongos , Animais , Quitosana/química , Hidrogéis/química , Metilcelulose , Engenharia Tecidual/métodos , Diferenciação Celular , Alicerces Teciduais/química
7.
Toxicon ; 223: 107007, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563862

RESUMO

Fungi are ubiquitous in distribution and are found in grasses to hot springs. Their mode of nutrition provides sustenance for living and propagation. Ironically, varied fungal species have developed customized strategies for protection and survival by producing diverse secondary metabolites. The review aimed to project the contrasting potential features of the endophytic and thermophilic fungi groups. The metabolites and the enzymes of endophytic and thermophilic fungi served as the backbone to thrive and adapt within-host and in extreme conditions like higher pH, heat, and salinity, respectively. Identification, knowledge of their biochemistry and pathway, exploration, production, and utilization of these bioactive molecules in various commercial, industrial, and pharmaceutical domains were briefly discussed. The uniqueness of endophytes includes stress management and improved biomass production of the host, green fuel production, omnipresence, selected triple-symbiosis with the virus, synthesis of polyketides, and other active metabolites are widely used in biomedical applications and agriculture management. This review attempted to limelight the specific applications of thermophilic fungal metabolites and the roles of thermo-stable enzymes in bioprospecting. Moreover, probing the metabolites of thermophiles rendered novel antibiotic compounds, which were proven effective against multi-drug resistant bacteria and harboured the potential to curtail infectious diseases.


Assuntos
Fungos , Biotecnologia , Endófitos/metabolismo , Fungos/metabolismo , Plantas , Simbiose
8.
Environ Mol Mutagen ; 64(2): 123-131, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36541415

RESUMO

Recent technological advances in the medical field have increased the plausibility of exposing humans to high-intensity wavelength radiations like x-rays and gamma rays while diagnosing or treating specific medical maladies. These radiations induce nucleotide changes and chromosomal alterations in the exposed population, intentionally or accidentally. A radiological investigation is regularly used in identifying the disease, especially by the technicians working in intensive care units. The current study observes the genetic damages like chromosomal abnormalities (CA) in clinicians who are occupationally exposed to high-intensity radiations (x-rays) at their workplaces using universal cytogenetic tools like micronucleus assay (MN), sister chromatid exchange and comet assay. The study was conducted between 100 exposed practitioners from the abdominal scanning, chest scanning, cranial and orthopedic or bone scanning department and age-matched healthy controls. We observed a slightly higher rate of MN and CA (p < .05) in orthopedic and chest department practitioners than in other departments concerning increasing age and duration of exposure at work. Our results emphasize taking extra precautionary measures in clinical and hospital radiation laboratories to protect the practitioners.


Assuntos
Dano ao DNA , Exposição Ocupacional , Humanos , Raios X , Radiografia , Raios gama , Aberrações Cromossômicas , Hospitais , Testes para Micronúcleos/métodos , Linfócitos
9.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296552

RESUMO

The tracing of an alternative drug, Phytochemicals is a promising approach to the viral threats that have emerged over the past two years. Across the world, herbal medicine is a better solution against anti-viral diseases during pandemic periods. Goniothalamus wightii is an herbal plant, which has diverse bioactive compounds with anticancer, antioxidant, and anti-viral properties. The aim of the study was to isolate the compound by chromatography studies and functionalization by FT-IR, LC-MS, and NMR (C-NMR, H-NMR). As a result, the current work focuses on whether (S)-Goniathalamin and its analogue could act as natural anti-viral molecules for multiple target proteins viz., MPro, RdRp, and SPro, which are required for SARS-CoV-2 infection. Overall, 954 compounds were examined and the molecular-docking studies were performed on the maestro platform of Schrodinger software. Molecular-dynamics simulation studies were performed on two complex major compounds to confirm their affinity across 150 simulations. This research suggests that plant-based drugs have high levels of antiviral properties against coronavirus. However, more research is needed to verify its antiviral properties.


Assuntos
Tratamento Farmacológico da COVID-19 , Goniothalamus , Humanos , SARS-CoV-2 , Proteases 3C de Coronavírus , Antioxidantes , Espectroscopia de Infravermelho com Transformada de Fourier , Cisteína Endopeptidases/química , Antivirais/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA
10.
Drug Dev Ind Pharm ; 48(8): 406-416, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36268597

RESUMO

OBJECTIVES: The present study aims to investigate the protective effect of Euphorbia thymifolia and Euphorbia hirta extracts on in vitro antioxidant activity and in vivo analysis on hepatic marker enzyme levels and histopathological changes in the liver of carbon tetrachloride (CCl4) induced hepatotoxicity rats. MATERIALS AND METHODS: This study includes 42 adult male Albino Wistar rats randomly divided into seven treatment groups, including control (basal diet, G1), CCl4-induced single dose (1.5 ml/kg, i.p.) as the negative control (G2), G1 supplemented with 300 mg/kg of ethanol extract of E. thymifolia (G3) and E. hirta (G4), G2 supplemented with 300 mg/kg of ethanol extract of E. thymifolia (G5), E. hirta (G6), and silymarin (25 mg/kg b.w.) used as a standard drug (G7) for 21-days experimental period. RESULTS: The ethanolic extracts of E. thymifolia and E. hirta exhibited potential in vitro antioxidant activity in a dose-dependent manner (25 µg/ml, 50 µg/ml, 100 µg/ml, 200 µg/ml and 250 µg/ml). Oxidative stress caused by CCl4-induced the liver damage, including changes in liver marker enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase), enzymatic (superoxide dismutase and catalase), non-enzymatic antioxidants (lipid peroxides and glutathione) and hepatocellular alterations such as hydropic degeneration, irregular hepatocytes, and distention of the vein. Administration of E. thymifolia and E. hirta significantly (p < 0.05) restored the enzyme activity along with the histology of the liver. CONCLUSION: The results from the current study demonstrate that E. thymifolia and E. hirta have the property of restoring hepatic redox capacity and antioxidant activities against CCl4-induced acute liver damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Euphorbia , Masculino , Ratos , Animais , Tetracloreto de Carbono , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Estresse Oxidativo , Fígado , Etanol/farmacologia , Peroxidação de Lipídeos
11.
Drug Dev Ind Pharm ; 48(9): 480-490, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36165580

RESUMO

BACKGROUND: Cervical cancer continues to be the leading cause of death worldwide despite the availability of many therapeutic options. Biogenic synthesis of metal nanoparticles paves a new way for the development of targeted drug delivery modalities of cancer therapeutics. OBJECTIVE: In this study, we demonstrate the efficacy of biosynthesized silver nanoparticles from methanolic leaf extract of Citrus hystrix as an anticancer agent used against cervical cancer cell line HeLa. METHODS: The addition of 1 mM silver nitrate to methanolic leaf extract of Citrus hystrix resulted in the biosynthesis of silver nanoparticles during the reaction mixture and was incubated in the dark for 1 h at pH 9 with gentle stirring. Characterization of synthesized NPs was carried out using various analyses. MTT assay, DAPI, AO/EB double staining, and reverse transcriptase-PCR (RT-PCR) analysis were carried out to evaluate the cytotoxic activity of Citrus hystrix mediated green synthesized silver nanoparticles (ChAgNPs). RESULTS AND CONCLUSION: The absorption band at 430 nm, as shown by UV-vis spectroscopy revealed the formation of AgNPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis shows that most of the ChAgNPs were spherical in shape and X-ray diffraction (XRD) patterns revealed the crystalline nature of the particles. Moreover, its potent cytotoxic effect on the HeLa cell line was analyzed using MTT assay with an IC50 value of 56 µg/ml by decreasing the cell viability in a dose and time-dependent manner. The induced apoptotic activity was confirmed by DAPI and double staining methods. Autophagic and apoptotic mediated cell death in ChAgNPs treated HeLa cell line was confirmed by staining procedures and RT-PCR methods.


Assuntos
Antineoplásicos , Citrus , Nanopartículas Metálicas , Neoplasias do Colo do Útero , Humanos , Feminino , Células HeLa , Nanopartículas Metálicas/química , Neoplasias do Colo do Útero/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Prata , Antineoplásicos/química , Antibacterianos/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-35911161

RESUMO

Carrageenan, a sulfated polysaccharide, was produced by certain species of marine red seaweeds, which have been used as a significant source of food, feed, and antibiotic agent throughout history due to their alleged human health benefits. The present study aimed to derive the polysaccharides from Hypnea valentiae and describe the biological applications. Carrageenan was characterized by FT-IR, C-NMR, AFM, and their antimicrobial, antioxidant, and anticoagulant capabilities; furthermore, the larvicidal effect of methanol extract was generated from the seaweed against Aedes aegypti larvae at various concentrations. The molecular docking experiments were carried out computationally for finding the molecular insight of the macromolecules and small molecules' interaction using GLIDE docking by using Schrodinger software. Antibacterial zones of inhibition in different concentrations are compared with the 40 mg/mL higher activity against bacterial pathogens. Carrageenan is strong in all antioxidant activities, with the overall antioxidant (70.1 ± 0.61%) of radical at 250 µg/mL concentration being exhibited. The DPPH scavenging is effective in the inhibition of (65.74 ± 0.58%) radical at a concentration of 160 µg/mL and the hydroxyl scavenging (65.72 ± 0.60%) of activity at a concentration of 125 µg/mL being exhibited. Anticoagulant activities (APPT and PT) of carrageenan fraction were tested. H. valentiae and heparin sulphate shows higher activity of APTT (106.50 IU at 25 µg/mL) in comparison with the PT test (57.86 IU at 25 µg/mL) and the methanol extraction of higher larvicidal activity on A. aegypti (LC50 = 99.675 µg/mL). In this study, the carrageenan was exploited through in vitro and in silico molecular docking studies against antimicrobial, antioxidant, and anticoagulant properties. The results were establishing the potentiality of the carrageenan which is an alternative source to control the mosquitocidal property in the future. Moreover, molecular docking of carrageenan against multiple targets results in -7 to -6 Kcal/mol binding score. Findings of carrageen from in vitro to in silico studies are needed for further validation of clinical pieces of evidence.

13.
Front Mol Biosci ; 9: 918101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836934

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can cause a sudden respiratory disease spreading with a high mortality rate arising with unknown mechanisms. Still, there is no proper treatment available to overcome the disease, which urges the research community and pharmaceutical industries to screen a novel therapeutic intervention to combat the current pandemic. This current study exploits the natural phytochemicals obtained from clove, a traditional natural therapeutic that comprises important bioactive compounds used for targeting the main protease of SARS-CoV-2. As a result, inhibition of viral replication effectively procures by targeting the main protease, which is responsible for the viral replication inside the host. Pharmacokinetic studies were evaluated for the property of drug likeliness. A total of 53 bioactives were subjected to the study, and four among them, namely, eugenie, syzyginin B, eugenol, and casuarictin, showed potential binding properties against the target SARS-CoV-2 main protease. The resultant best bioactive was compared with the commercially available standard drugs. Furthermore, validation of respective compounds with a comprehensive molecular dynamics simulation was performed using Schrödinger software. To further validate the bioactive phytochemicals and delimit the screening process of potential drugs against coronavirus disease 2019, in vitro and in vivo clinical studies are needed to prove their efficacy.

14.
Toxicon ; 213: 59-75, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452686

RESUMO

Ochratoxin A (OTA) is a toxic metabolite produced by Aspergillus and Penicillium fungi commonly found in raw plant sources and other feeds. This review comprises an extensive evaluation of the origin and proprieties of OTA, toxicokinetics, biotransformation, and toxicodynamics of ochratoxins. In in vitro and in vivo studies, the compatibility of OTA with oxidative stress is observed through the production of free radicals, resulting in genotoxicity and carcinogenicity. The OTA leads to nephrotoxicity as the chief target organ is the kidney. Other OTA excretion and absorption rates are observed, and the routes of elimination include faeces, urine, and breast milk. The alternations in the Phe moiety of OTA are the precursor for the amino acid alternation, bringing about Phe-hydroxylase and Phe-tRNA synthase, resulting in the complete dysfunction of cellular metabolism. Biodetoxification using specific microorganisms decreased the DNA damage, lipid peroxidation, and cytotoxicity. This review addressed the ability of antioxidants and the dietary components as prophylactic measures to encounter toxicity and demonstrated their capability to counteract the chronic exposure through supplementation as feed additives.


Assuntos
Ocratoxinas , Penicillium , Animais , Aspergillus/metabolismo , Humanos , Gado/metabolismo , Ocratoxinas/metabolismo , Ocratoxinas/toxicidade
15.
J Reprod Immunol ; 150: 103473, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35030354

RESUMO

Placenta is a crucial source of Tissue Factor (TF) to initiate coagulation. As far as the TF is concern, aberrant expression of TF has been reported to have a significant role in thrombosis, inflammation, cancer metastasis and atherosclerosis. It is evident that TF and TF-FVIIa complex has major roles in the disease process beyond hemostasis and thrombosis. On the other hand, TF-FVII-dependent signaling primarily activates PAR2 and inducing pro-angiogenic and immune-modulating cytokines in tumor environment. However, the role of TF has not been delineated in placental functions. Integrin typically binds to the extracellular matrix which in turn mediate cell-cell adhesion and cell behavior for migration. Dysregulation of integrin expression affects cell interaction, proliferation, and migration. Therefore, this study aims to ascertain the expression of TF in HTR-8/SVneo trophoblast cell line and its role in signal transduction of integrin (ITGα1, ITGα2, ITGß1) regulation concerning the invasion of trophoblasts. We have used RT-PCR and Western blot for the gene and protein expression analysis respectively. In addition, cell migration assays, MTT, and DAPI were performed to examine migration, cytotoxicity and apoptosis effect of FVIIa. The results suggest that the gene and protein level expressions of TF were predominant in HTR-8/SVneo cell line. Further, the cytotoxicity and apoptosis in HTR-8/SVneo cells were not observed when treated with FVIIa. The cells treated with FVIIa shown a dose-dependent up-regulation of integrin(s) (**p < 0.01, *p < 0.05) when compared to control. Migration of the HTR-8/SVneo cells was observed without any apoptosis in FVIIa-treated cells when compared to that of control. On the whole, these observations delineated the TF-FVIIa interaction in modulating the TF-dependent integrin signal transduction in HTR-8/SVneo trophoblast cell line.


Assuntos
Tromboplastina , Trofoblastos , Movimento Celular , Feminino , Humanos , Integrinas/metabolismo , Placenta/metabolismo , Gravidez , Tromboplastina/genética , Tromboplastina/metabolismo , Trofoblastos/metabolismo
16.
Sci Total Environ ; 805: 150355, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818767

RESUMO

Post COVID-19, mucormycosis occurred after the SARS-CoV-2 has rampaged the human population and is a scorching problem among the pandemic globally, particularly among Asian countries. Invasive mucormycosis has been extensively reported from mild to severe COVID-19 survivors. The robust predisposing factor seems to be uncontrolled diabetes mellitus, comorbidity and immunosuppression acquired through steroid therapy. The prime susceptive reason for the increase of mucormycosis cases is elevated iron levels in the serum of the COVID survivors. A panoramic understanding of the infection has been elucidated based on clinical manifestation, genetic and non- genetic mechanisms of steroid drug administration, biochemical pathways and immune modulated receptor associations. This review lime-lights and addresses the "What", "Why", "How" and "When" about the COVID-19 associated mucormycosis (CAM) in a comprehensive manner with a pure intention to bring about awareness to the common public as the cases are inevitably and exponentially increasing in India and global countries as well. The article also unearthed the pathogenesis of mucormycosis and its association with the COVID-19 sequela, the plausible routes of entry, diagnosis and counter remedies to keep the infection at bay. Cohorts of case reports were analysed to spotlight the link between the pandemic COVID-19 and the nightmare-mucormycosis.


Assuntos
COVID-19 , Mucormicose , Comorbidade , Fungos , Humanos , Mucormicose/epidemiologia , Pandemias , SARS-CoV-2
17.
Biol Trace Elem Res ; 200(6): 2684-2697, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34448982

RESUMO

Effective cancer therapy can be achieved by using nano-drug delivery systems which provide a targeted drug delivery strategy by overcoming the drawbacks of conventional treatments like chemotherapy and radiation. ZnO nanoparticles are a potent anticancer agent that causes tumor cell destruction with the targeted drug delivery. In this present study, green synthesis of ZnO nanoparticles has been done using the plant Solanum nigrum. The synthesized ZnO nanoparticles were studied by the characterization techniques like UV-visible spectroscopy, SEM, TEM, DLS, zeta potential, FTIR, and XRD. The synthesized ZnO nanoparticles of Solanum nigrum exhibited a significant anticancer activity against HeLa cell lines through the apoptotic pathway. The cytotoxicity of ZnO nanoparticles was assessed using MTT assay, wound healing assay, DAPI staining, and acridine orange and ethidium bromide double staining. The expression patterns of ß-catenin, p53, caspase-3, and caspase-9 were analyzed using reverse transcriptase-PCR. The results obtained from the study indicate that the ZnO nanoparticles of Solanum nigrum possess a dose-dependent cytotoxic effect against HeLa cell lines through the inhibition of ß-catenin and increasing the levels of p53, caspase-3, and caspase-9.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Solanum nigrum , Neoplasias do Colo do Útero , Óxido de Zinco , Antibacterianos/farmacologia , Antineoplásicos/química , Apoptose , Caspase 3 , Caspase 9 , Feminino , Células HeLa , Humanos , Nanopartículas Metálicas/química , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteína Supressora de Tumor p53 , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , beta Catenina
18.
Int J Gynaecol Obstet ; 156(2): 216-224, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34735717

RESUMO

Pregnancy changes the body's immune system to counteract the spectrum of infections, including COVID-19, which can pose complications. Pregnant women are less likely to contract COVID-19 infections than the general public. However, pregnant women are at slightly increased risk of becoming severely unwell if they do catch COVID-19, and congenital conditions in pregnant women may worsen the state of infection and lead to critical stages and even mortality. The possibility of vertical transmission has been reported in only a few cases of COVID-19; however, it was not noted in cases of SARS and MERS. Vaccination coverage in pregnant women remains a challenge. Children are the next suspected and vulnerable population to acquire infection after the first and second waves. Children are disproportionately infected compared with older populations, but the severity of infection is less compared to adults. This review highlights the complexities of COVID-19 in pregnant women and the underlying reasons why children tend to be comparatively less severely affected. Ethnicity, nutrition, lifestyle, and therapeutics influence the severity of infection in children. Low expression of angiotensin-converting enzyme 2 receptors, indigenous virus competence, and maternal immunity is the first-line defense for children against COVID-19. Habituating herbal medicines from childhood may help support a robust and defensive immune system to counteract novel antigens and encourage healthy generations.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Criança , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Gravidez , Gestantes , SARS-CoV-2
19.
Artigo em Inglês | MEDLINE | ID: mdl-34956401

RESUMO

Colorectal cancer (CRC) is one of the globally prevalent and virulent types of cancer with a distinct alteration in chromosomes. Often, any alterations in the adenomatosis polyposis coli (APC), a tumor suppressor gene, and methylenetetrahydrofolate reductase (MTHFR) gene are related to surmise colorectal cancer significantly. In this study, we have investigated chromosomal and gene variants to discern a new-fangled gene and its expression in the southern populations of India by primarily spotting the screened APC and MTHFR variants in CRC patients. An equal number of CRC patients and healthy control subjects (n = 65) were evaluated to observe a chromosomal alteration in the concerted and singular manner for APC and MTHFR genotypes using standard protocols. The increasing prognosis was observed in persons with higher alcoholism and smoking (P < 0.05) with frequent alterations in chromosomes 1, 5, 12, 13, 15, 17, 18, 21, and 22. The APC Asp 1822Val and MTHFR C677T genotypes provided significant results, while the variant alleles of this polymorphism were linked with an elevated risk of CRC. Chromosomal alterations can be the major cause in inducing carcinogenic outcomes in CRCs and can drive to extreme pathological states.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo Genético , Fatores de Risco
20.
Asian Pac J Cancer Prev ; 22(11): 3507-3511, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837906

RESUMO

OBJECTIVE: Local chickens were spontaneously sampled and slaughtered in the central markets of Coimbatore, Erode, and Namakkal districts, South India. MATERIALS AND METHODS: Wet digestion was used to extract lead (Pb), cadmium (Cd), and zinc (Zn) in their blood and selected different organs (intestine, breast, liver, and gizzard), and their concentrations were measured using an atomic absorption spectrophotometer. RESULTS: Apart from the blood of chickens from Coimbatore and Namakkal, where Pb was not found, the concentrations of Pb in the blood and organs of chickens from the three towns ranged from 1.8 to 8.33 mg/kg, exceeding the maximum tolerance thresholds (0.1 mg/kg) in internal organs of poultry birds. Except for the intestine of chickens from the three areas, Cd was only found in the heart, blood, and gizzard of Erode chickens, as well as the liver and gizzard of Namakkal chickens, in concentrations ranging from 0.13 to 0.58. According to threshold level, the upper limit met the maximum limits (0.5 mg/kg). Zn was found in all sections of chickens from the three selected districts, with concentrations ranging from 4.96 to 174.17 mg/kg. CONCLUSION: Its concentrations were within the permissible limits (10-50 mg/kg) in some areas of certain chickens, but it surpassed the permissible limit in the liver of chicken from Coimbatore. Any organs and blood from local chickens sold in Coimbatore, Erode, and Namakkal areas can be hazardous to one's health.


Assuntos
Cádmio/análise , Contaminação de Alimentos/análise , Chumbo/análise , Produtos Avícolas/análise , Animais , Carcinógenos , Galinhas , Humanos , Índia , Concentração Máxima Permitida , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA