Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurooncol ; 157(2): 221-236, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35235137

RESUMO

BACKGROUND: Focused ultrasound (FUS) is an emerging technology, offering the capability of tuning and prescribing thermal and mechanical treatments within the brain. While early works in utilizing this technology have mainly focused on maximizing the delivery of therapeutics across the blood-brain barrier (BBB), the potential therapeutic impact of FUS-induced controlled thermal and mechanical stress to modulate anti-tumor immunity is becoming increasingly recognized. OBJECTIVE: To better understand the roles of FUS-mediated thermal and mechanical stress in promoting anti-tumor immunity in central nervous system tumors, we performed a comprehensive literature review on focused ultrasound-mediated immunomodulation and immunotherapy in brain tumors. METHODS: First, we summarize the current clinical experience with immunotherapy. Then, we discuss the unique and distinct immunomodulatory effects of the FUS-mediated thermal and mechanical stress in the brain tumor-immune microenvironment. Finally, we highlight recent findings that indicate that its combination with immune adjuvants can promote robust responses in brain tumors. RESULTS: Along with the rapid advancement of FUS technologies into recent clinical trials, this technology through mild-hyperthermia, thermal ablation, mechanical perturbation mediated by microbubbles, and histotripsy each inducing distinct vascular and immunological effects, is offering the unique opportunity to improve immunotherapeutic trafficking and convert immunologically "cold" tumors into immunologically "hot" ones that are prone to generate prolonged anti-tumor immune responses. CONCLUSIONS: While FUS technology is clearly accelerating concepts for new immunotherapeutic combinations, additional parallel efforts to detail rational therapeutic strategies supported by rigorous preclinical studies are still in need to leverage potential synergies of this technology with immune adjuvants. This work will accelerate the discovery and clinical implementation of new effective FUS immunotherapeutic combinations for brain tumor patients.


Assuntos
Neoplasias Encefálicas , Terapia por Ultrassom , Barreira Hematoencefálica , Neoplasias Encefálicas/terapia , Sistemas de Liberação de Medicamentos , Humanos , Imunidade , Imunomodulação , Imunoterapia , Estresse Mecânico , Microambiente Tumoral
2.
Artigo em Inglês | MEDLINE | ID: mdl-34748486

RESUMO

Real-time, 3-D, passive acoustic mapping (PAM) of microbubble dynamics during transcranial focused ultrasound (FUS) is essential for optimal treatment outcomes. The angular spectrum approach (ASA) potentially offers a very efficient method to perform PAM, as it can reconstruct specific frequency bands pertinent to microbubble dynamics and may be extended to correct aberrations caused by the skull. Here, we experimentally assess the abilities of heterogeneous ASA (HASA) to perform trans-skull PAM. Our experimental investigations demonstrate that the 3-D PAMs of a known 1-MHz source, constructed with HASA through an ex vivo human skull segment, reduced both the localization error (from 4.7 ± 2.3 to 2.3 ± 1.6 mm) and the number, size, and energy of spurious lobes caused by aberration, with the modest additional computational expense. While further improvements in the localization errors are expected with arrays with denser elements and larger aperture, our analysis revealed that experimental constraints associated with the array pitch and aperture (here, 1.8 mm and 2.5 cm, respectively) can be ameliorated by interpolation and peak finding techniques. Beyond the array characteristics, our analysis also indicated that errors in the registration (translation and rotation of ±5 mm and ±5°, respectively) of the skull segment to the array can lead to peak localization errors of the order of a few wavelengths. Interestingly, errors in the spatially dependent speed of sound in the skull (±20%) caused only subwavelength errors in the reconstructions, suggesting that registration is the most important determinant of point source localization accuracy. Collectively, our findings show that HASA can address source localization problems through the skull efficiently and accurately under realistic conditions, thereby creating unique opportunities for imaging and controlling the microbubble dynamics in the brain.


Assuntos
Microbolhas , Crânio , Acústica , Encéfalo/diagnóstico por imagem , Humanos , Crânio/diagnóstico por imagem , Som
3.
Theranostics ; 11(15): 7276-7293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158850

RESUMO

Effective drug delivery in brain tumors remains a major challenge in oncology. Although local hyperthermia and stimuli-responsive delivery systems, such as thermosensitive liposomes, represent promising strategies to locally enhance drug delivery in solid tumors and improve outcomes, their application in intracranial malignancies remains unexplored. We hypothesized that the combined abilities of closed-loop trans-skull Magnetic Resonance Imaging guided Focused Ultrasound (MRgFUS) hyperthermia with those of thermosensitive drugs can alleviate challenges in drug delivery and improve survival in gliomas. Methods: To conduct our investigations, we first designed a closed loop MR-guided Focused Ultrasound (MRgFUS) system for localized trans-skull hyperthermia (ΔT < 0.5 °C) in rodents and established safety thresholds in healthy mice. To assess the abilities of the developed system and proposed therapeutic strategy for FUS-triggered chemotherapy release we employed thermosensitive liposomal Dox (TSL-Dox) and tested it in two different glioma tumor models (F98 in rats and GL261 in mice). To quantify Dox delivery and changes in the transvascular transport dynamics in the tumor microenvironment we combined fluorescent microscopy, dynamic contrast enhanced MRI (DCE-MRI), and physiologically based pharmacokinetic (PBPK) modeling. Lastly, to assess the therapeutic efficacy of the system and of the proposed therapeutic strategy we performed a survival study in the GL261 glioma bearing mice. Results: The developed closed-loop trans-skull MRgFUS-hyperthermia system that operated at 1.7 MHz, a frequency that maximized the brain (FUS-focus) to skull temperature ratio in mice, was able to attain and maintain the desired focal temperature within a narrow range. Histological evidence (H&E and Nissl) suggests that focal temperature at 41.5 ± 0.5 °C for 10 min is below the threshold for tissue damage. Quantitative analysis of doxorubicin delivery from TSLs with MRgFUS-hyperthermia demonstrated 3.5-fold improvement in cellular uptake in GL261 glioma mouse tumors (p < 0.001) and 5-fold increase in delivery in F98 glioma rat tumors (p < 0.05), as compared to controls (TSL-Dox-only). Moreover, PBPK modeling of drug transport that was calibrated using the experimental data indicated that thermal stress could lead to significant improvement in the transvascular transport (2.3-fold increase in the vessel diffusion coefficient; P < 0.001), in addition to promoting targeted Dox release. Prospective experimental investigations with DCE-MRI during FUS-hyperthermia, supported these findings and provided evidence that moderate thermal stress (≈41 °C for up to 10 min) can promote acute changes in the vascular transport dynamics in the brain tumor microenvironment (Ktrans value for control vs. FUS was 0.0097 and 0.0148 min-1, respectively; p = 0.026). Crucially, survival analysis demonstrated significant improvement in the survival in the TSL-Dox-FUS group as compared to TSL-Dox-only group (p < 0.05), providing supporting evidence on the therapeutic potential of the proposed strategy. Conclusions: Our investigations demonstrated that spatially controlled thermal stress can be attained and sustained in the mouse brain, using a trans-skull closed-loop MRgFUS system, and used to promote the effective delivery of chemotherapy in gliomas from thermosensitive drugs. This system also allowed us to conduct mechanistic investigations that resulted in the refinement of our understanding on the role of thermal stress in augmenting mass and drug transport in brain tumors. Overall, our study established a new paradigm for effective drug delivery in brain tumors based on closed-loop ultrasound-mediated thermal stress and thermosensitive drugs.


Assuntos
Neoplasias Encefálicas/terapia , Doxorrubicina , Sistemas de Liberação de Medicamentos , Glioma/terapia , Hipertermia Induzida , Crânio , Terapia por Ultrassom , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Camundongos
4.
J Acoust Soc Am ; 148(4): EL333, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33138472

RESUMO

The angular spectrum approach (ASA)-a frequency domain method to calculate the acoustic field-enables highly efficient passive source localization and modeling forward propagation in homogeneous media. If the medium is continuously stratified, a first-order analytical solution may be obtained for the field at arbitrary depth. Simulations show that the proposed stratified ASA solution enables accurate source localization as compared to the uncorrected ASA (error from 1.2 ± 0.3 to 0.49 ± 0.3 wavelengths) at scalings relevant to biomedical, underwater, and atmospheric acoustic applications, and requiring milliseconds on nonspecialized hardware. The results suggest the proposed correction enables efficient and accurate localization in stratified environments.

5.
IEEE Trans Med Imaging ; 39(5): 1605-1614, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31751231

RESUMO

Ultrasound, alone or in concert with circulating microbubble contrast agents, has emerged as a promising modality for therapy and imaging of brain diseases. While this has become possible due to advancements in aberration correction methods, a range of applications, including adaptive focusing and tracking of the microbubble dynamics through the human skull, may benefit from even more computationally efficient methods to account for skull aberrations. Here, we derive a general method for the angular spectrum approach (ASA) in a heterogeneous medium, based on a numerical marching scheme to approximate the full implicit solution. We then demonstrate its functionality with simulations for (human) skull-related aberration correction and trans-skull passive acoustic mapping. Our simulations show that the general solution provides accurate trans-skull focusing as compared to the uncorrected case (error in focal point location of 1.0 ± 0.4 mm vs 2.2 ± 0.7 mm) for clinically relevant frequencies (0.25-1.5MHz), apertures (50-100 mm), and targets, with peak focal pressures approximately 30 ± 17% of the free field case, with the effects of skull attenuation and amplitude shading included. In the case of source localization, our method leads to an average of 75% error reduction (from 2.9 ± 1.8 mm to 0.7 ± 0.5 mm) and 40-60% increase in peak intensity, evaluated over the range of frequencies (0.4-1.2 MHz), apertures (50-100 mm), and point source locations (40 mm by 50 mm grid) as compared to the homogeneous medium ASA. Overall, total computation times for both focusing and point source localization of the order milliseconds (166 ± 37 ms, compared with 44 ± 4 ms for the homogeneous ASA formulation) can be attained with this approach. Collectively our findings indicate that the proposed phase correction method based on the ASA could provide a computationally efficient and accurate method for trans-skull transmit focusing and imaging of point scatterers, potentially opening new possibilities for treatment and diagnosis of brain diseases.


Assuntos
Encéfalo , Terapia por Ultrassom , Encéfalo/diagnóstico por imagem , Humanos , Microbolhas , Crânio/diagnóstico por imagem , Ultrassonografia
6.
Nat Rev Cancer ; 20(1): 26-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31601988

RESUMO

For a blood-borne cancer therapeutic agent to be effective, it must cross the blood vessel wall to reach cancer cells in adequate quantities, and it must overcome the resistance conferred by the local microenvironment around cancer cells. The brain microenvironment can thwart the effectiveness of drugs against primary brain tumours as well as brain metastases. In this Review, we highlight the cellular and molecular components of the blood-brain barrier (BBB), a specialized neurovascular unit evolved to maintain brain homeostasis. Tumours are known to compromise the integrity of the BBB, resulting in a vasculature known as the blood-tumour barrier (BTB), which is highly heterogeneous and characterized by numerous distinct features, including non-uniform permeability and active efflux of molecules. We discuss the challenges posed by the BBB and BTB for drug delivery, how multiple cell types dictate BBB function and the role of the BTB in disease progression and treatment. Finally, we highlight emerging molecular, cellular and physical strategies to improve drug delivery across the BBB and BTB and discuss their impact on improving conventional as well as emerging treatments, such as immune checkpoint inhibitors and engineered T cells. A deeper understanding of the BBB and BTB through the application of single-cell sequencing and imaging techniques, and the development of biomarkers of BBB integrity along with systems biology approaches, should enable new personalized treatment strategies for primary brain malignancies and brain metastases.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Microambiente Tumoral , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Transporte Biológico , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/terapia , Terapia Combinada , Sistemas de Liberação de Medicamentos , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Medicina de Precisão , Microambiente Tumoral/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-30475706

RESUMO

Ultrasonically actuated microbubble oscillations hold great promise for minimally invasive therapeutic interventions. While several preclinical studies have demonstrated the potential of this technology, real-time methods to control the amplitude and type of microbubble oscillations (stable vs inertial acoustic cavitation) and ensure that cavitation occurs within the targeted region are needed for their successful translation to the clinic. In this paper, we propose a real-time nonlinear state controller that uses specific frequency bands of the microbubble acoustic emissions (harmonic, ultra-harmonic, etc.) to control cavitation activity (observer states). To attain both spatial and temporal control of cavitation activity with high signal to noise ratio, we implement a controller using fast frequency-selective passive acoustic mapping (PAM) based on the angular spectrum approach. The controller includes safety states based on the recorded broadband signal level and is able to reduce sensing inaccuracies with the inclusion of multiple frequency bands. In its simplest implementation the controller uses the peak intensity of the passive acoustic maps, reconstructed using the 3rd harmonic (4.896 × 0.019 MHz) of the excitation frequency. Our results show that the proposed real-time nonlinear state controller based on PAM is able to reach the targeted level of observer state (harmonic emissions) in less than 6 seconds and remain within 10 % of tolerance for the duration of the experiment (45 seconds). Similar response was observed using the acoustic emissions from single element passive cavitation detection, albeit with higher susceptibility to background noise and lack of spatial information. Importantly, the proposed PAM-based controller was able to control cavitation activity with spatial selectivity when cavitation existed simultaneously in multiple regions. The robustness of the controller is demonstrated using a range of controller parameters, multiple observer states concurrently (harmonic, ultra-harmonic, and broadband), noise levels (°6 to 12 dB SNR), and bubble concentrations (0.3 to 180 × 103 bubbles per microliter). More research in this direction under preclinical and clinical conditions is warranted.

8.
Proc Natl Acad Sci U S A ; 115(37): E8717-E8726, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150398

RESUMO

Blood-brain/blood-tumor barriers (BBB and BTB) and interstitial transport may constitute major obstacles to the transport of therapeutics in brain tumors. In this study, we examined the impact of focused ultrasound (FUS) in combination with microbubbles on the transport of two relevant chemotherapy-based anticancer agents in breast cancer brain metastases at cellular resolution: doxorubicin, a nontargeted chemotherapeutic, and ado-trastuzumab emtansine (T-DM1), an antibody-drug conjugate. Using an orthotopic xenograft model of HER2-positive breast cancer brain metastasis and quantitative microscopy, we demonstrate significant increases in the extravasation of both agents (sevenfold and twofold for doxorubicin and T-DM1, respectively), and we provide evidence of increased drug penetration (>100 vs. <20 µm and 42 ± 7 vs. 12 ± 4 µm for doxorubicin and T-DM1, respectively) after the application of FUS compared with control (non-FUS). Integration of experimental data with physiologically based pharmacokinetic (PBPK) modeling of drug transport reveals that FUS in combination with microbubbles alleviates vascular barriers and enhances interstitial convective transport via an increase in hydraulic conductivity. Experimental data demonstrate that FUS in combination with microbubbles enhances significantly the endothelial cell uptake of the small chemotherapeutic agent. Quantification with PBPK modeling reveals an increase in transmembrane transport by more than two orders of magnitude. PBPK modeling indicates a selective increase in transvascular transport of doxorubicin through small vessel wall pores with a narrow range of sizes (diameter, 10-50 nm). Our work provides a quantitative framework for the optimization of FUS-drug combinations to maximize intratumoral drug delivery and facilitate the development of strategies to treat brain metastases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ado-Trastuzumab Emtansina , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Humanos , Maitansina/administração & dosagem , Maitansina/análogos & derivados , Maitansina/farmacocinética , Camundongos , Microbolhas , Trastuzumab/administração & dosagem , Trastuzumab/farmacocinética , Ultrassonografia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Adv Drug Deliv Rev ; 119: 159-174, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28648712

RESUMO

Five-year survival rates have not increased appreciably for patients with primary and metastatic brain tumors. Nearly 17,000 patients die from primary brain tumors, whereas approximately 200,000 cases are diagnosed with brain metastasis every year in the US alone. At the same time, with improved control of systemic disease, the incidence of brain metastasis is increasing. Thus, novel approaches for improving the treatment outcome for these uniformly fatal diseases are needed urgently. In the review, we summarize the challenges in the treatment of these diseases using antiangiogenic therapies alone or in combination with radio-, chemo- and immuno-therapies. We also discuss the emerging strategies to improve the treatment outcome using both pharmacological approaches to normalize the tumor microenvironment and physical approaches (e.g., focused ultrasound) to modulate the blood-tumor-barrier, along with limitations of each approach. Finally, we offer some new avenues of future research.


Assuntos
Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Animais , Humanos , Taxa de Sobrevida , Microambiente Tumoral/efeitos dos fármacos
10.
IEEE Trans Med Imaging ; 36(4): 983-993, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28026755

RESUMO

In the present proof of principle study, we evaluated the homogenous angular spectrum method for passive acoustic mapping (AS-PAM) of microbubble oscillations using simulated and experimental data. In the simulated data we assessed the ability of AS-PAM to form 3D maps of a single and multiple point sources. Then, in the two dimensional limit, we compared the 2D maps from AS-PAM with alternative frequency and time domain passive acoustic mapping (FD- and TD-PAM) approaches. Finally, we assessed the ability of AS-PAM to visualize microbubble activity in vivo with data obtained during 8 different experiments of FUS-induced blood-brain barrier disruption in 3 nonhuman primates, using a clinical MR-guided FUS system. Our in silico results demonstrate AS-PAM can be used to perform 3D passive acoustic mapping. 2D AS-PAM as compared to FD- PAM and TD-PAM is 10 and 200 times faster respectively and has similar sensitivity, resolution, and localization accuracy, even when the noise was 10-fold higher than the signal. In-vivo, the AS-PAM reconstructions of emissions at frequency bands pertinent to the different types of microbubble oscillations were also found to be more sensitive than TD-PAM. AS-PAM of harmonic-only components predicted safe blood-brain barrier disruption, whereas AS-PAM of broadband emissions correctly identified MR-evident tissue damage. The disparity (3.2 mm) in the location of the cavitation activity between the three methods was within their resolution limits. These data clearly demonstrate that AS-PAM is a sensitive and fast approach for PAM, thus providing a clinically relevant method to guide therapeutic ultrasound procedures.


Assuntos
Acústica , Animais , Microbolhas , Primatas , Som , Terapia por Ultrassom , Ultrassonografia
11.
Small ; 12(19): 2616-26, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27031786

RESUMO

Overcoming transport barriers to delivery of therapeutic agents in tumors remains a major challenge. Focused ultrasound (FUS), in combination with modern nanomedicine drug formulations, offers the ability to maximize drug transport to tumor tissue while minimizing toxicity to normal tissue. This potential remains unfulfilled due to the limitations of current approaches in accurately assessing and quantifying how FUS modulates drug transport in solid tumors. A novel acoustofluidic platform is developed by integrating a physiologically relevant 3D microfluidic device and a FUS system with a closed-loop controller to study drug transport and assess the response of cancer cells to chemotherapy in real time using live cell microscopy. FUS-induced heating triggers local release of the chemotherapeutic agent doxorubicin from a liposomal carrier and results in higher cellular drug uptake in the FUS focal region. This differential drug uptake induces locally confined DNA damage and glioblastoma cell death in the 3D environment. The capabilities of acoustofluidics for accurate control of drug release and monitoring of localized cell response are demonstrated in a 3D in vitro tumor mode. This has important implications for developing novel strategies to deliver therapeutic agents directly to the tumor tissue while sparing healthy tissue.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Monitoramento de Medicamentos/instrumentação , Análise de Injeção de Fluxo/instrumentação , Dispositivos Lab-On-A-Chip , Neoplasias Experimentais/tratamento farmacológico , Sonicação/instrumentação , Acústica/instrumentação , Técnicas de Cultura Celular por Lotes/instrumentação , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Sistemas Microeletromecânicos/instrumentação , Neoplasias Experimentais/patologia , Impressão Tridimensional/instrumentação
12.
J Neurosurg ; 124(5): 1450-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26381252

RESUMO

OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in those cases the sonication exceeded the inertial cavitation threshold in the beam path. CONCLUSIONS It is feasible to use a clinical TcMRgFUS system to ablate skull base targets in nonhuman primates at time-averaged acoustic power levels at least 2 orders of magnitude below what is needed for thermal ablation with this device. The results point to the risks associated with the method if the exposure levels are not carefully controlled to avoid inertial cavitation in the acoustic beam path. If methods can be developed to provide this control, this nonthermal approach could greatly expand the use of TcMRgFUS for precisely targeted ablation to locations across the entire brain.


Assuntos
Encéfalo/cirurgia , Imagem por Ressonância Magnética Intervencionista/métodos , Procedimentos Cirúrgicos Ultrassônicos/métodos , Ultrassonografia de Intervenção/métodos , Animais , Encéfalo/patologia , Estudos de Viabilidade , Macaca mulatta , Imagem por Ressonância Magnética Intervencionista/instrumentação , Base do Crânio/patologia , Base do Crânio/cirurgia , Procedimentos Cirúrgicos Ultrassônicos/instrumentação , Ultrassonografia de Intervenção/instrumentação
13.
Sci Rep ; 5: 16253, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542745

RESUMO

Here we describe a novel method to noninvasively modulate targeted brain areas through the temporary disruption of the blood-brain barrier (BBB) via focused ultrasound, enabling focal delivery of a neuroactive substance. Ultrasound was used to locally disrupt the BBB in rat somatosensory cortex, and intravenous administration of GABA then produced a dose-dependent suppression of somatosensory-evoked potentials in response to electrical stimulation of the sciatic nerve. No suppression was observed 1-5 days afterwards or in control animals where the BBB was not disrupted. This method has several advantages over existing techniques: it is noninvasive; it is repeatable via additional GABA injections; multiple brain regions can be affected simultaneously; suppression magnitude can be titrated by GABA dose; and the method can be used with freely behaving subjects. We anticipate that the application of neuroactive substances in this way will be a useful tool for noninvasively mapping brain function, and potentially for surgical planning or novel therapies.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Animais , Barreira Hematoencefálica , Córtex Cerebral/citologia , Estimulação Elétrica , Potenciais Somatossensoriais Evocados , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/administração & dosagem
14.
IEEE Trans Med Imaging ; 34(6): 1270-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25546857

RESUMO

The interaction of ultrasonically-controlled microbubble oscillations with tissues and biological media has been shown to induce a wide range of bioeffects that may have significant impact on therapy and diagnosis of brain diseases and disorders. However, the inherently non-linear microbubble oscillations combined with the micrometer and microsecond scales involved in these interactions and the limited methods to assess and visualize them transcranially hinder both their optimal use and translation to the clinics. To overcome these challenges, we present a framework that combines numerical simulations with multimodality imaging to assess and visualize the microbubble oscillations transcranially. In the present work, microbubble oscillations were studied with an integrated US and MR imaging guided clinical FUS system. A high-resolution brain CT scan was also co-registered to the US and MR images and the derived acoustic properties were used as inputs to two- and three-dimensional Finite Difference Time Domain simulations that matched the experimental conditions and geometry. Synthetic point sources by either a Gaussian function or the output of a microbubble dynamics model were numerically excited and propagated through the skull towards a virtual US imaging array. Using passive acoustic mapping (PAM) that was refined to incorporate variable speed of sound, we were able to correct the aberrations introduced by the skull and substantially improve the PAM resolution. The good agreement between the simulations incorporating microbubble emissions and experimentally-determined PAMs suggest that this integrated approach can provide a clinically-relevant framework and more control over this nonlinear and dynamic process.


Assuntos
Cabeça/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Microbolhas , Ultrassonografia de Intervenção/métodos , Animais , Macaca mulatta , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes
15.
Adv Drug Deliv Rev ; 72: 94-109, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24462453

RESUMO

The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Ultrassom/métodos , Animais , Humanos , Terapia por Ultrassom
16.
Med Phys ; 40(11): 112901, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24320468

RESUMO

PURPOSE: Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. METHODS: The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. RESULTS: When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM∕MRTI registration. Although there was substantial variation, a nonlinear relationship between the average intensity of the cavitation maps, which was relatively constant during sonication, and the peak temperature rise was evident. A fit to the data to an exponential had a correlation coefficient (R(2)) of 0.62. The system was also found to be capable of visualizing cavitation activity with B-mode imaging and of passively mapping cavitation activity transcranially during cavitation-enhanced heating and during low-power sonication with an ultrasound contrast agent. CONCLUSIONS: The authors have demonstrated the feasibility of integrating an ultrasound imaging array into an MRgFUS system to simultaneously map localized cavitation activity and temperature. The authors anticipate that this integrated approach can be utilized to develop controllers for cavitation-enhanced ablation and facilitate the optimization and development of this and other ultrasound therapies. The integrated system may also provide a useful tool to study the bioeffects of acoustic cavitation.


Assuntos
Imageamento por Ressonância Magnética , Terapia por Ultrassom , Ultrassonografia , Acústica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Temperatura Alta , Humanos , Microbolhas , Neoplasias/terapia , Imagens de Fantasmas , Crânio/diagnóstico por imagem , Sonicação , Viscosidade
17.
Phys Med Biol ; 58(14): 4749-61, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23788054

RESUMO

Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation--the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will further the development of a broad range of microbubble-enhanced therapies.


Assuntos
Encéfalo , Ecoencefalografia , Imageamento por Ressonância Magnética , Terapia por Ultrassom/métodos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Feminino , Macaca mulatta
18.
J Control Release ; 169(1-2): 40-7, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23562636

RESUMO

Oncolytic viruses (OV) and ultrasound-enhanced drug delivery are powerful novel technologies. OV selectively self-amplify and kill cancer cells but their clinical use has been restricted by limited delivery from the bloodstream into the tumor. Ultrasound has been previously exploited for targeted release of OV in vivo, but its use to induce cavitation, microbubble oscillations, for enhanced OV tumor extravasation and delivery has not been previously reported. By identifying and optimizing the underlying physical mechanism, this work demonstrates that focused ultrasound significantly enhances the delivery and biodistribution of systemically administered OV co-injected with microbubbles. Up to a fiftyfold increase in tumor transgene expression was achieved, without any observable tissue damage. Ultrasound exposure parameters were optimized as a function of tumor reperfusion time to sustain inertial cavitation, a type of microbubble activity, throughout the exposure. Passive detection of acoustic emissions during treatment confirmed inertial cavitation as the mechanism responsible for enhanced delivery and enabled real-time monitoring of successful viral delivery.


Assuntos
Adenoviridae/fisiologia , Sistemas de Liberação de Medicamentos/instrumentação , Neoplasias/terapia , Terapia Viral Oncolítica/instrumentação , Vírus Oncolíticos/fisiologia , Ultrassom/instrumentação , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Desenho de Equipamento , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microbolhas , Neoplasias/genética , Vírus Oncolíticos/genética , Transgenes
19.
Int J Hyperthermia ; 29(2): 133-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23406389

RESUMO

PURPOSE: The present study aims to create and characterise a cell-embedding tissue-mimicking material (TMM) that has thermal and acoustic properties similar to liver tissue, in order to enable study and optimisation of protocols for ultrasound-induced hyperthermia and drug delivery. MATERIALS AND METHODS: An agarose-based, cell-embedding TMM was iteratively developed and characterised. The acoustic properties (attenuation coefficient, speed of sound and cavitation threshold) and thermal response of the material were compared with those of fresh degassed liver tissue over a range of acoustic pressures and frequencies. A luminescence intensity assay was used to evaluate viability of HuH-7 cells in the material. The efficacy of ultrasound-mediated chemotherapeutic treatment in the material was tested by localised activation of low temperature thermally sensitive liposomes. Drug activation was measured by fluorescence microscopy. RESULTS: Similar acoustic properties (attenuation coefficient, speed of sound) to liver tissue were achieved over the therapeutically relevant frequency range of 1-4 MHz and similar thermal response was achieved for acoustic pressures up to 4.8 MPa peak to peak (ppk) at 1.1 MHz. Above 4.8 MPa ppk cavitation enhanced heating occurred in the TMM. Drug release from low-temperature-sensitive liposomes was achieved with 4.4 MPa ppk 6-s exposures at 1.1 MHz and cell compatibility of the material was confirmed. CONCLUSIONS: A platform for in vitro work for activation of thermally sensitive liposomes using high intensity focused ultrasound (HIFU)-induced hyperthermia was established. The TMM presents similar acoustic properties and thermal response to liver tissue over a broad range of ultrasound exposure conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fígado , Inclusão do Tecido , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Sobrevivência Celular , Doxorrubicina/administração & dosagem , Géis , Humanos , Lipossomos , Neoplasias Hepáticas/terapia , Imagens de Fantasmas , Sefarose
20.
PLoS One ; 7(9): e45783, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029240

RESUMO

The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2) = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/efeitos da radiação , Sonicação/métodos , Acústica , Algoritmos , Animais , Barreira Hematoencefálica/efeitos da radiação , Meios de Contraste/farmacocinética , Feminino , Gadolínio DTPA/farmacocinética , Corpos Geniculados/irrigação sanguínea , Corpos Geniculados/efeitos da radiação , Giro do Cíngulo/irrigação sanguínea , Giro do Cíngulo/efeitos da radiação , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Microbolhas , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA