Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Stud Health Technol Inform ; 316: 1674-1678, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39176532

RESUMO

Brain tumours are the most commonly occurring solid tumours in children, albeit with lower incidence rates compared to adults. However, their inherent heterogeneity, ethical considerations regarding paediatric patients, and difficulty in long-term follow-up make it challenging to gather large homogenous datasets for analysis. This study focuses on the development of a Convolutional Neural Network (CNN) for brain tumour characterisation using the adult BraTS 2020 dataset. We propose to transfer knowledge, from models pre-trained on extensive adult brain tumour datasets to smaller cohort datasets (e.g., paediatric brain tumours) in future studies, by leveraging Transfer Learning (TL). This approach aims to extract relevant features from pre-trained models, addressing the limited availability of annotated paediatric datasets and enhancing tumour characterisation in children. The implications and potential applications of this methodology in paediatric neuro-oncology are discussed.


Assuntos
Neoplasias Encefálicas , Redes Neurais de Computação , Humanos , Adulto , Aprendizado de Máquina
2.
Stud Health Technol Inform ; 316: 1140-1144, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39176582

RESUMO

Healthcare projects necessitate effective collaboration between clinical and technical partners, particularly during pivotal phases like lab testing and piloting. However, challenges in coordination often impede seamless collaboration, leading to inefficiencies and delays. This paper presents a comprehensive approach to developing a help desk service tailored for CAREPATH projects, leveraging SharePoint services and Power Automate. The solution aims to bridge communication gaps, foster collaboration, and enhance coordination among clinical and technical partners. Through iterative development and testing, we refined the system based on stakeholder feedback, resulting in streamlined workflows and improved document management. During the lab testing phase, the help desk system demonstrated significant improvements in resolution duration, communication efficiency, and success solution rates. Stakeholder feedback highlighted enhanced collaboration and improved access to project documentation. With successful testing, the help desk is poised for implementation in subsequent phases, promising further enhancements in patient engagement, technology integration, and scalability. These findings underscore the critical role of help desks in healthcare ICT projects, offering a transformative approach to project management and stakeholder collaboration. Future directions include enhancing patient engagement, leveraging advanced technologies, and conducting longitudinal studies to evaluate long-term impact. Embracing these directions will drive positive change, delivering better outcomes for patients and caregivers in healthcare ICT projects.


Assuntos
Informática Médica , Informática Médica/organização & administração , Humanos , Fluxo de Trabalho , Comportamento Cooperativo
3.
Stud Health Technol Inform ; 316: 1145-1150, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39176583

RESUMO

Advances in general-purpose computers have enabled the generation of high-quality synthetic medical images that human eyes cannot differ between real and AI-generated images. To analyse the efficacy of the generated medical images, this study proposed a modified VGG16-based algorithm to recognise AI-generated medical images. Initially, 10,000 synthetic medical skin lesion images were generated using a Generative Adversarial Network (GAN), providing a set of images for comparison to real images. Then, an enhanced VGG16-based algorithm has been developed to classify real images vs AI-generated images. Following hyperparameters tuning and training, the optimal approach can classify the images with 99.82% accuracy. Multiple other evaluations have been used to evaluate the efficacy of the proposed network. The complete dataset used in this study is available online to the research community for future research.


Assuntos
Aprendizado Profundo , Humanos , Algoritmos , Dermatopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Cutâneas/diagnóstico por imagem
4.
Stud Health Technol Inform ; 316: 1193-1197, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39176595

RESUMO

Digital health solutions hold promise for enhancing healthcare delivery and patient outcomes, primarily driven by advancements such as machine learning, artificial intelligence, and data science, which enable the development of integrated care systems. Techniques for generating synthetic data from real datasets are highly advanced and continually evolving. This paper aims to present the INSAFEDARE project's ambition regarding medical devices' regulation and how real and synthetic data can be used to check if devices are safe and effective. The project will consist of three pillars: a) assurance of new state-of-the-art technologies and approaches (such as synthetic data), which will support the validation methods as part of regulatory decision-making; b) technical and scientific, focusing on data-based safety assurance, as well as discovery, integration and use of datasets, and use of machine learning approaches; and c) delivery to practice, through co-production involving relevant stakeholders, dissemination and sustainability of the project's outputs. Finally, INSAFEDARE will develop an open syllabus and training certification for health professionals focused on quality assurance.


Assuntos
Aprendizado de Máquina , Humanos , Sistemas de Apoio a Decisões Clínicas , Inteligência Artificial , Garantia da Qualidade dos Cuidados de Saúde
5.
Stud Health Technol Inform ; 316: 242-246, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39176719

RESUMO

Healthcare faces significant challenges in exchanging and utilizing health information across diverse providers, necessitating innovative solutions for improved interoperability. This study presents a comprehensive exploration of scalable technical and semantic solutions for patient care integration, emphasizing the implementation of these solutions within the framework of the Fast Healthcare Interoperability Resources (FHIR) standard. Our approach revolves around the development and deployment of Technical Interoperability Suite (TIS) and Semantic Interoperability Suite (SIS) technology solutions to disparate health information systems, predominantly Electronic Health Records (EHRs) into a unified Patient Care Platform, fostering comprehensive data exchange and utilization. The integration process involves importing data from various EHR systems and transforming imported patient data into FHIR-standardized formats. The provided solution supports various functionalities, including automatic and manual importation of patient data, through standard computer-readable templates. The integration of TIS and SIS solutions is underpinned by a robust technological framework, incorporating technologies such as Typescript, Deno, and document-oriented databases such as MongoDB. The effectiveness of our interoperability solutions was validated through deployment in multinational EU projects: ADLIFE and CAREPATH. The scalability and generalizability of our approach underscore its potential for diverse healthcare settings.


Assuntos
Registros Eletrônicos de Saúde , Interoperabilidade da Informação em Saúde , Humanos , Registro Médico Coordenado/métodos , Semântica , Integração de Sistemas
6.
Digit Health ; 10: 20552076241258756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070888

RESUMO

Objective: Establish a relationship between digital health intervention (DHI) and health system challenges (HSCs), as defined by the World Health Organization; within the context of hazard identification (HazID), leading to safety claims. To improve the justification of safety of DHIs and provide a standardised approach to hazard assessment through common terminology, ontology and simplification of safety claims. Articulation of results, to provide guidance for health strategy and regulatory/standards-based compliance. Methods: We categorise and analyse hazards using a qualitative HazID study. This method utilises a synergy between simplicity of DHI intended use and the interaction from a multidisciplinary team (technologists and health informaticians) in the hazard analysis of the subject under assessment as an influencing factor. Although there are other methodologies available for hazard assessment. We examine the hazards identified and associated failures to articulate the improvements in the quality of safety claims. Results: Applying the method provides the hazard assessment and helps generate the assurance case. Justification of safety is made and elicits confidence in safety claim. Controls to hazards contribute to meeting the HSC. Conclusions: This method of hazard assessment, analysis and the use of ontologies (DHI & HSC) improves the justification of safety claim and evidence articulation.

7.
BMC Med Inform Decis Mak ; 24(1): 185, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943152

RESUMO

INTRODUCTION: This paper outlines the design, implementation, and usability study results of the patient empowerment process for chronic disease management, using Patient Reported Outcome Measurements and Shared Decision-Making Processes. BACKGROUND: The ADLIFE project aims to develop innovative, digital health solutions to support personalized, integrated care for patients with severe long-term conditions such as Chronic Obstructive Pulmonary Disease, and/or Chronic Heart Failure. Successful long-term management of patients with chronic conditions requires active patient self-management and a proactive involvement of patients in their healthcare and treatment. This calls for a patient-provider partnership within an integrated system of collaborative care, supporting self-management, shared-decision making, collection of patient reported outcome measures, education, and follow-up. METHODS: ADLIFE follows an outcome-based and patient-centered approach where PROMs represent an especially valuable tool to evaluate the outcomes of the care delivered. We have selected 11 standardized PROMs for evaluating the most recent patients' clinical context, enabling the decision-making process, and personalized care planning. The ADLIFE project implements the "SHARE approach' for enabling shared decision-making via two digital platforms for healthcare professionals and patients. We have successfully integrated PROMs and shared decision-making processes into our digital toolbox, based on an international interoperability standard, namely HL7 FHIR. A usability study was conducted with 3 clinical sites with 20 users in total to gather feedback and to subsequently prioritize updates to the ADLIFE toolbox. RESULTS: User satisfaction is measured in the QUIS7 questionnaire on a 9-point scale in the following aspects: overall reaction, screen, terminology and tool feedback, learning, multimedia, training material and system capabilities. With all the average scores above 6 in all categories, most respondents have a positive reaction to the ADLIFE PEP platform and find it easy to use. We have identified shortcomings and have prioritized updates to the platform before clinical pilot studies are initiated. CONCLUSIONS: Having finalized design, implementation, and pre-deployment usability studies, and updated the tool based on further feedback, our patient empowerment mechanisms enabled via PROMs and shared decision-making processes are ready to be piloted in clinal settings. Clinical studies will be conducted based at six healthcare settings across Spain, UK, Germany, Denmark, and Israel.


Assuntos
Tomada de Decisão Compartilhada , Participação do Paciente , Medidas de Resultados Relatados pelo Paciente , Humanos , Doença Crônica/terapia , Empoderamento
8.
Front Med (Lausanne) ; 11: 1386689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860204

RESUMO

Introduction: The CAREPATH Project aims to develop a patient-centered integrated care platform tailored to older adults with multimorbidity, including mild cognitive impairment (MCI) or mild dementia. Our goal is to empower multidisciplinary care teams to craft personalized holistic care plans while adhering to evidence-based guidelines. This necessitates the creation of clear specifications for clinical decision support (CDS) services, consolidating guidance from multiple evidence-based clinical guidelines. Thus, a co-creation approach involving both clinical and technical experts is essential. Methods: This paper outlines a robust methodology for generating implementable specifications for CDS services to automate clinical guidelines. We have established a co-creation framework to facilitate collaborative exploration of clinical guidelines between clinical experts and software engineers. We have proposed an open, repeatable, and traceable method for translating evidence-based guideline narratives into implementable specifications of CDS services. Our approach, based on international standards such as CDS-Hooks and HL7 FHIR, enhances interoperability and potential adoption of CDS services across diverse healthcare systems. Results: This methodology has been followed to create implementable specifications for 65 CDS services, automating CAREPATH consensus guideline consolidating guidance from 25 selected evidence-based guidelines. A total of 296 CDS rules have been formally defined, with input parameters defined as clinical concepts bound to FHIR resources and international code systems. Outputs include 346 well-defined CDS Cards, offering clear guidance for care plan activities and goal suggestions. These specifications have led to the implementation of 65 CDS services integrated into the CAREPATH Adaptive Integrated Care Platform. Discussion: Our methodology offers a systematic, replicable process for generating CDS specifications, ensuring consistency and reliability across implementation. By fostering collaboration between clinical expertise and technical proficiency, we enhance the quality and relevance of generated specifications. Clear traceability enables stakeholders to track the development process and ensure adherence to guideline recommendations.

9.
BMJ Open ; 14(4): e076613, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569710

RESUMO

OBJECTIVE: The COVID-19 pandemic accelerated changes to clinical research methodology, with clinical studies being carried out via online/remote means. This mixed-methods study aimed to identify which digital tools are currently used across all stages of clinical research by stakeholders in clinical, health and social care research and investigate their experience using digital tools. DESIGN: Two online surveys followed by semistructured interviews were conducted. Interviews were audiorecorded, transcribed and analysed thematically. SETTING, PARTICIPANTS: To explore the digital tools used since the pandemic, survey participants (researchers and related staff (n=41), research and development staff (n=25)), needed to have worked on clinical, health or social care research studies over the past 2 years (2020-2022) in an employing organisation based in the West Midlands region of England (due to funding from a regional clinical research network (CRN)). Survey participants had the opportunity to participate in an online qualitative interview to explore their experiences of digital tools in greater depth (n=8). RESULTS: Six themes were identified in the qualitative interviews: 'definition of a digital tool in clinical research'; 'impact of the COVID-19 pandemic'; 'perceived benefits/drawbacks of digital tools'; 'selection of a digital tool'; 'barriers and overcoming barriers' and 'future digital tool use'. The context of each theme is discussed, based on the interview results. CONCLUSIONS: Findings demonstrate how digital tools are becoming embedded in clinical research, as well as the breadth of tools used across different research stages. The majority of participants viewed the tools positively, noting their ability to enhance research efficiency. Several considerations were highlighted; concerns about digital exclusion; need for collaboration with digital expertise/clinical staff, research on tool effectiveness and recommendations to aid future tool selection. There is a need for the development of resources to help optimise the selection and use of appropriate digital tools for clinical research staff and participants.


Assuntos
COVID-19 , Pandemias , Humanos , Apoio Social , COVID-19/epidemiologia , Inglaterra , Projetos de Pesquisa
10.
NMR Biomed ; 37(6): e5129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494431

RESUMO

Proton magnetic resonance spectroscopy (1H-MRS) is increasingly used for clinical brain tumour diagnosis, but suffers from limited spectral quality. This retrospective and comparative study aims at improving paediatric brain tumour classification by performing noise suppression on clinical 1H-MRS. Eighty-three/forty-two children with either an ependymoma (ages 4.6 ± 5.3/9.3 ± 5.4), a medulloblastoma (ages 6.9 ± 3.5/6.5 ± 4.4), or a pilocytic astrocytoma (8.0 ± 3.6/6.3 ± 5.0), recruited from four centres across England, were scanned with 1.5T/3T short-echo-time point-resolved spectroscopy. The acquired raw 1H-MRS was quantified by using Totally Automatic Robust Quantitation in NMR (TARQUIN), assessed by experienced spectroscopists, and processed with adaptive wavelet noise suppression (AWNS). Metabolite concentrations were extracted as features, selected based on multiclass receiver operating characteristics, and finally used for identifying brain tumour types with supervised machine learning. The minority class was oversampled through the synthetic minority oversampling technique for comparison purposes. Post-noise-suppression 1H-MRS showed significantly elevated signal-to-noise ratios (P < .05, Wilcoxon signed-rank test), stable full width at half-maximum (P > .05, Wilcoxon signed-rank test), and significantly higher classification accuracy (P < .05, Wilcoxon signed-rank test). Specifically, the cross-validated overall and balanced classification accuracies can be improved from 81% to 88% overall and 76% to 86% balanced for the 1.5T cohort, whilst for the 3T cohort they can be improved from 62% to 76% overall and 46% to 56%, by applying Naïve Bayes on the oversampled 1H-MRS. The study shows that fitting-based signal-to-noise ratios of clinical 1H-MRS can be significantly improved by using AWNS with insignificantly altered line width, and the post-noise-suppression 1H-MRS may have better diagnostic performance for paediatric brain tumours.


Assuntos
Neoplasias Encefálicas , Espectroscopia de Prótons por Ressonância Magnética , Razão Sinal-Ruído , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Criança , Espectroscopia de Prótons por Ressonância Magnética/métodos , Feminino , Masculino , Pré-Escolar , Adolescente , Estudos Retrospectivos , Lactente
11.
NMR Biomed ; 37(5): e5101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303627

RESUMO

1H-magnetic resonance spectroscopy (MRS) has the potential to improve the noninvasive diagnostic accuracy for paediatric brain tumours. However, studies analysing large, comprehensive, multicentre datasets are lacking, hindering translation to widespread clinical practice. Single-voxel MRS (point-resolved single-voxel spectroscopy sequence, 1.5 T: echo time [TE] 23-37 ms/135-144 ms, repetition time [TR] 1500 ms; 3 T: TE 37-41 ms/135-144 ms, TR 2000 ms) was performed from 2003 to 2012 during routine magnetic resonance imaging for a suspected brain tumour on 340 children from five hospitals with 464 spectra being available for analysis and 281 meeting quality control. Mean spectra were generated for 13 tumour types. Mann-Whitney U-tests and Kruskal-Wallis tests were used to compare mean metabolite concentrations. Receiver operator characteristic curves were used to determine the potential for individual metabolites to discriminate between specific tumour types. Principal component analysis followed by linear discriminant analysis was used to construct a classifier to discriminate the three main central nervous system tumour types in paediatrics. Mean concentrations of metabolites were shown to differ significantly between tumour types. Large variability existed across each tumour type, but individual metabolites were able to aid discrimination between some tumour types of importance. Complete metabolite profiles were found to be strongly characteristic of tumour type and, when combined with the machine learning methods, demonstrated a diagnostic accuracy of 93% for distinguishing between the three main tumour groups (medulloblastoma, pilocytic astrocytoma and ependymoma). The accuracy of this approach was similar even when data of marginal quality were included, greatly reducing the proportion of MRS excluded for poor quality. Children's brain tumours are strongly characterised by MRS metabolite profiles readily acquired during routine clinical practice, and this information can be used to support noninvasive diagnosis. This study provides both key evidence and an important resource for the future use of MRS in the diagnosis of children's brain tumours.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Humanos , Criança , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética
12.
EBioMedicine ; 100: 104958, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184938

RESUMO

BACKGROUND: The malignant childhood brain tumour, medulloblastoma, is classified clinically into molecular groups which guide therapy. DNA-methylation profiling is the current classification 'gold-standard', typically delivered 3-4 weeks post-surgery. Pre-surgery non-invasive diagnostics thus offer significant potential to improve early diagnosis and clinical management. Here, we determine tumour metabolite profiles of the four medulloblastoma groups, assess their diagnostic utility using tumour tissue and potential for non-invasive diagnosis using in vivo magnetic resonance spectroscopy (MRS). METHODS: Metabolite profiles were acquired by high-resolution magic-angle spinning NMR spectroscopy (MAS) from 86 medulloblastomas (from 59 male and 27 female patients), previously classified by DNA-methylation array (WNT (n = 9), SHH (n = 22), Group3 (n = 21), Group4 (n = 34)); RNA-seq data was available for sixty. Unsupervised class-discovery was performed and a support vector machine (SVM) constructed to assess diagnostic performance. The SVM classifier was adapted to use only metabolites (n = 10) routinely quantified from in vivo MRS data, and re-tested. Glutamate was assessed as a predictor of overall survival. FINDINGS: Group-specific metabolite profiles were identified; tumours clustered with good concordance to their reference molecular group (93%). GABA was only detected in WNT, taurine was low in SHH and lipids were high in Group3. The tissue-based metabolite SVM classifier had a cross-validated accuracy of 89% (100% for WNT) and, adapted to use metabolites routinely quantified in vivo, gave a combined classification accuracy of 90% for SHH, Group3 and Group4. Glutamate predicted survival after incorporating known risk-factors (HR = 3.39, 95% CI 1.4-8.1, p = 0.025). INTERPRETATION: Tissue metabolite profiles characterise medulloblastoma molecular groups. Their combination with machine learning can aid rapid diagnosis from tissue and potentially in vivo. Specific metabolites provide important information; GABA identifying WNT and glutamate conferring poor prognosis. FUNDING: Children with Cancer UK, Cancer Research UK, Children's Cancer North and a Newcastle University PhD studentship.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Masculino , Feminino , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Neoplasias Cerebelares/diagnóstico , Glutamatos , Ácido gama-Aminobutírico , DNA
13.
Stud Health Technol Inform ; 309: 121-125, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37869820

RESUMO

The rapid development and implementation of Internet of Medical Things has made interoperability a serious challenge. In this scoping review, we provide an overview of the interoperability challenge, as reported in the health literature, and highlight the proposed solutions. After searching between January 2018 and June 2023 in Compendex via Engineering Village and PubMed, we found 18 publications. The interoperability challenges identified were device heterogeneity, system heterogeneity, data standardization, security and safety, system and architecture standard, system and workflow integration and regulatory and compliance requirements. Solutions included ontology approaches, conceptual semantic frameworks, improved standards, design of middleware, and using blockchain technology.


Assuntos
Blockchain , Segurança Computacional , Atenção à Saúde , Internet , Semântica
14.
Stud Health Technol Inform ; 309: 312-316, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37869870

RESUMO

In this narrative review, we investigate the potential opportunities and benefits, as well as the challenges and concerns of integrating the Internet of Things in healthcare. The opportunities include enhanced patient monitoring and management, improved efficiency and resource utilization, personalized and precision medicine, empowering patients and promoting self-management, and data-driven decision-making, while the challenges include security and privacy risks, interoperability and integration, regulatory and compliance issues, ethical considerations and impact on healthcare professionals and patients. These challenges must be carefully weighed against the benefits before deployment of the IoMT-enabled services.


Assuntos
Atenção à Saúde , Privacidade , Humanos , Internet
15.
Analyst ; 148(19): 4857-4868, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624366

RESUMO

Electrochemical sensing is ubiquitous in a number of fields ranging from biosensing, to environmental monitoring through to food safety and battery or corrosion characterisation. Whereas conventional potentiostats are ideal to develop assays in laboratory settings, they are in general, not well-suited for field work due to their size and power requirements. To address this need, a number of portable battery-operated potentiostats have been proposed over the years. However, most open source solutions do not take full advantage of integrated circuit (IC) potentiostats, a rapidly evolving field. This is partly due to the constraining requirements inherent to the development of dedicated interfaces, such as apps, to address and control a set of common electrochemical sensing parameters. Here we propose the PocketEC, a universal app that has all the functionalities to interface with potentiostat ICs through a user defined property file. The versatility of PocketEC, developed with an assay developer mindset, was demonstrated by interfacing it, via Bluetooth, to the ADuCM355 evaluation board, the open-source DStat potentiostat and the Voyager board, a custom-built, small footprint potentiostat based around the LMP91000 chip. The Voyager board is presented here for the first time. Data obtained using a standard redox probe, Ferrocene Carboxylic Acid (FCA) and a silver ion assay using anodic stripping multi-step amperometry were in good agreement with analogous measurements using a bench top potentiostat. Combined with its Voyager board companion, the PocketEC app can be used directly for a number of wearable or portable electrochemical sensing applications. Importantly, the versatility of the app makes it a candidate of choice for the development of future portable potentiostats. Finally, the app is available to download on the Google Play store and the source codes and design files for the PocketEC app and the Voyager board are shared via Creative Commons license (CC BY-NC 3.0) to promote the development of novel portable or wearable applications based on electrochemical sensing.

16.
Cancers (Basel) ; 15(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37444633

RESUMO

CDSSs are being continuously developed and integrated into routine clinical practice as they assist clinicians and radiologists in dealing with an enormous amount of medical data, reduce clinical errors, and improve diagnostic capabilities. They assist detection, classification, and grading of brain tumours as well as alert physicians of treatment change plans. The aim of this systematic review is to identify various CDSSs that are used in brain tumour diagnosis and prognosis and rely on data captured by any imaging modality. Based on the 2020 preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol, the literature search was conducted in PubMed and Engineering Village Compendex databases. Different types of CDSSs identified through this review include Curiam BT, FASMA, MIROR, HealthAgents, and INTERPRET, among others. This review also examines various CDSS tool types, system features, techniques, accuracy, and outcomes, to provide the latest evidence available in the field of neuro-oncology. An overview of such CDSSs used to support clinical decision-making in the management and treatment of brain tumours, along with their benefits, challenges, and future perspectives has been provided. Although a CDSS improves diagnostic capabilities and healthcare delivery, there is lack of specific evidence to support these claims. The absence of empirical data slows down both user acceptance and evaluation of the actual impact of CDSS on brain tumour management. Instead of emphasizing the advantages of implementing CDSS, it is important to address its potential drawbacks and ethical implications. By doing so, it can promote the responsible use of CDSS and facilitate its faster adoption in clinical settings.

17.
Stud Health Technol Inform ; 305: 608-611, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37387105

RESUMO

Technical and semantic interoperability are broadly used components of interoperability technology in healthcare. Technical Interoperability provides interoperability interfaces to enable data exchange within different healthcare systems, despite any underlying heterogeneity. Semantic interoperability make different healthcare systems understand and interpret the meaning of the data that is exchanged, by using and mapping standardized terminologies, coding systems, and data models to describe the concept and structure of data. We propose a solution using Semantic and Structural Mapping techniques within CAREPATH; a research project designed to develop ICT solutions for the care management of elderly multimorbid patients with mild cognitive impairment or mild dementia. Our technical interoperability solution supplies a standard-based data exchange protocol to enable information exchange between local care systems and CAREPATH components. Our semantic interoperability solution supplies programmable interfaces, in order to semantically mediate different clinical data representation formats and incorporating data format and terminology mapping features. The solution offers a more reliable, flexible and resource efficient method across EHRs.


Assuntos
Disfunção Cognitiva , Demência , Telemedicina , Idoso , Humanos , Semântica , Programas Governamentais
18.
Stud Health Technol Inform ; 302: 337-341, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203674

RESUMO

The MedSecurance project focus on identifying new challenges in cyber security with focus on hardware and software medical devices in the context of emerging healthcare architectures. In addition, the project will review best practice and identify gaps in the guidance, particularly the guidance stipulated by the medical device regulation and directives. Finally, the project will develop comprehensive methodology and tooling for the engineering of trustworthy networks of inter-operating medical devices, that shall have security-for-safety by design, with a strategy for device certification and certifiable dynamic network composition, ensuring that patient safety is safeguarded from malicious cyber actors and technology "accidents".


Assuntos
Certificação , Segurança Computacional , Humanos , Engenharia , Instalações de Saúde , Legislação de Dispositivos Médicos
19.
Artigo em Inglês | MEDLINE | ID: mdl-36833849

RESUMO

Due to population ageing and medical advances, people with advanced chronic diseases (ACD) live longer. Such patients are even more likely to face either temporary or permanent reduced functional reserve, which typically further increases their healthcare resource use and the burden of care on their caregiver(s). Accordingly, these patients and their caregiver(s) may benefit from integrated supportive care provided via digitally supported interventions. This approach may either maintain or improve their quality of life, increase their independence, and optimize the healthcare resource use from early stages. ADLIFE is an EU-funded project, aiming to improve the quality of life of older people with ACD by providing integrated personalized care via a digitally enabled toolbox. Indeed, the ADLIFE toolbox is a digital solution which provides patients, caregivers, and health professionals with digitally enabled, integrated, and personalized care, supporting clinical decisions, and encouraging independence and self-management. Here we present the protocol of the ADLIFE study, which is designed to provide robust scientific evidence on the assessment of the effectiveness, socio-economic, implementation, and technology acceptance aspects of the ADLIFE intervention compared to the current standard of care (SoC) when applied in real-life settings of seven different pilot sites across six countries. A quasi-experimental trial following a multicenter, non-randomized, non-concurrent, unblinded, and controlled design will be implemented. Patients in the intervention group will receive the ADLIFE intervention, while patients in the control group will receive SoC. The assessment of the ADLIFE intervention will be conducted using a mixed-methods approach.


Assuntos
Cuidadores , Qualidade de Vida , Humanos , Idoso , Doença Crônica , Pessoal de Saúde , Fatores Socioeconômicos , Estudos Multicêntricos como Assunto
20.
Br J Radiol ; 96(1145): 20201465, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802769

RESUMO

OBJECTIVE: Investigate the performance of qualitative review (QR) for assessing dynamic susceptibility contrast (DSC-) MRI data quality in paediatric normal brain and develop an automated alternative to QR. METHODS: 1027 signal-time courses were assessed by Reviewer 1 using QR. 243 were additionally assessed by Reviewer 2 and % disagreements and Cohen's κ (κ) were calculated. The signal drop-to-noise ratio (SDNR), root mean square error (RMSE), full width half maximum (FWHM) and percentage signal recovery (PSR) were calculated for the 1027 signal-time courses. Data quality thresholds for each measure were determined using QR results. The measures and QR results trained machine learning classifiers. Sensitivity, specificity, precision, classification error and area under the curve from a receiver operating characteristic curve were calculated for each threshold and classifier. RESULTS: Comparing reviewers gave 7% disagreements and κ = 0.83. Data quality thresholds of: 7.6 for SDNR; 0.019 for RMSE; 3 s and 19 s for FWHM; and 42.9 and 130.4% for PSR were produced. SDNR gave the best sensitivity, specificity, precision, classification error and area under the curve values of 0.86, 0.86, 0.93, 14.2% and 0.83. Random forest was the best machine learning classifier, giving sensitivity, specificity, precision, classification error and area under the curve of 0.94, 0.83, 0.93, 9.3% and 0.89. CONCLUSION: The reviewers showed good agreement. Machine learning classifiers trained on signal-time course measures and QR can assess quality. Combining multiple measures reduces misclassification. ADVANCES IN KNOWLEDGE: A new automated quality control method was developed, which trained machine learning classifiers using QR results.


Assuntos
Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Criança , Sensibilidade e Especificidade , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA