Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21176, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027689

RESUMO

Cosmetics consumers need to be aware of their skin type before purchasing products. Identifying skin types can be challenging, especially when they vary from oily to dry in different areas, with skin specialist providing more accurate results. In recent years, artificial intelligence and machine learning have been utilized across various fields, including medicine, to assist in identifying and predicting situations. This study developed a skin type classification model using a Convolutional Neural Networks (CNN) deep learning algorithms. The dataset consisted of normal, oily, and dry skin images, with 112 images for normal skin, 120 images for oily skin, and 97 images for dry skin. Image quality was enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique, with data augmentation by rotation applied to increase dataset variety, resulting in a total of 1,316 images. CNN architectures including MobileNet-V2, EfficientNet-V2, InceptionV2, and ResNet-V1 were optimized and evaluated. Findings showed that the EfficientNet-V2 architecture performed the best, achieving an accuracy of 91.55% with average loss of 22.74%. To further improve the model, hyperparameter tuning was conducted, resulting in an accuracy of 94.57% and a loss of 13.77%. The Model performance was validated using 10-fold cross-validation and tested on unseen data, achieving an accuracy of 89.70% with a loss of 21.68%.

2.
PLoS One ; 18(4): e0282592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37068093

RESUMO

The intra-hospital transfer of critically ill patients are associated with complications at up to 70%. Numerous issues can be avoided with optimal pre-transport planning and communication. Simulation models have been demonstrated to be an effective method for modeling processes and enhancing on-time service and queue management. Discrete-event simulation (DES) models are acceptable for general hospital systems with increased variability. Herein, they are used to improve service effectiveness. A prospective observational study was conducted on 13 official day patient transfers, resulting in a total of 827 active patient transfers. Patient flow was simulated using discrete-event simulation (DES) to accurately and precisely represent real-world systems and act accordingly. Several patient transfer criteria were examined to create a more realistic simulation of patient flow. Waiting times were also measured to assess the efficiency of the patient transfer process. A simulation was conducted to identify 20 scenarios in order to discover the optimal scenario in which where the number of requests (stretchers or wheelchairs) was increased, while the number of staff was decreased to determine mean waiting times and confidence intervals. The most effective approach for decreasing waiting times involved prioritizing patients with the most severe symptoms. After a transfer process was completed, staff attended to the next transfer process without returning to base. Results show that the average waiting time was reduced by 21.78% which is significantly important for emergency cases. A significant difference was recorded between typical and recommended patient transfer processes when the number of requests increased. To decrease waiting times, the patient transfer procedure should be modified according to our proposed DES model, which can be used to analyze and design queue management systems that achieve optimal waiting times.


Assuntos
Eficiência Organizacional , Transferência de Pacientes , Humanos , Simulação por Computador , Fatores de Tempo , Hospitais Gerais , Serviço Hospitalar de Emergência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA