Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Pharm Biol ; 61(1): 1135-1151, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37497554

RESUMO

CONTEXT: Arjunolic acid (AA) is a triterpenoid saponin found in Terminalia arjuna (Roxb.) Wight & Arn. (Combretaceae). It exerts cardiovascular protective effects as a phytomedicine. However, it is unclear how AA exerts the effects at the molecular level. OBJECTIVE: This study investigates the cardioprotective effects of arjunolic acid (AA) via MyD88-dependant TLR4 downstream signaling marker expression. MATERIALS AND METHODS: The MTT viability assay was used to assess the cytotoxicity of AA. LPS induced in vitro cardiovascular disease model was developed in H9C2 and C2C12 myotubes. The treatment groups were designed such as control (untreated), LPS control, positive control (LPS + pyrrolidine dithiocarbamate (PDTC)-25 µM), and treatment groups were co-treated with LPS and three concentrations of AA (50, 75, and 100 µM) for 24 h. The changes in the expression of TLR4 downstream signaling markers were evaluated through High Content Screening (HCS) and Western Blot (WB) analysis. RESULTS: After 24 h of co-treatment, the expression of TLR4, MyD88, MAPK, JNK, and NF-κB markers were upregulated significantly (2-6 times) in the LPS-treated groups compared to the untreated control in both HCS and WB experiments. Evidently, the HCS analysis revealed that MyD88, NF-κB, p38, and JNK were significantly downregulated in the H9C2 myotube in the AA treated groups. In HCS, the expression of NF-κB was downregulated in C2C12. Additionally, TLR4 expression was downregulated in both H9C2 and C2C12 myotubes in the WB experiment. DISCUSSION AND CONCLUSIONS: TLR4 marker expression in H9C2 and C2C12 myotubes was subsequently decreased by AA treatment, suggesting possible cardioprotective effects of AA.


Assuntos
NF-kappa B , Triterpenos , Lipopolissacarídeos/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Triterpenos/farmacologia , Animais , Camundongos , Ratos
2.
Life Sci ; 327: 121856, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307966

RESUMO

BACKGROUND: Arjunolic acid (AA) is a potent phytochemical with multiple therapeutics effects. In this study, AA is evaluated on type 2 diabetic (T2DM) rats to understand the mechanism of ß-cell linkage with Toll-like receptor 4 (TLR-4) and canonical Wnt signaling. However, its role in modulating TLR-4 and canonical Wnt/ß-catenin crosstalk on insulin signaling remains unclear during T2DM. Aim The current study is aimed to examine the potential role of AA on insulin signaling and TLR-4-Wnt crosstalk in the pancreas of type 2 diabetic rats. METHOD: Multiple methods were used to determine molecular cognizance of AA in T2DM rats, when treated with different dosage levels. Histopathological and histomorphometry analysis was conducted using masson trichrome and H&E stains. While, protein and mRNA expressions of TLR-4/Wnt and insulin signaling were assessed using automated Western blotting (jess), immunohistochemistry, and RT-PCR. RESULTS: Histopathological findings revealed that AA had reversed back the T2DM-induced apoptosis and necrosis caused to rats pancreas. Molecular findings exhibited prominent effects of AA in downregulating the elevated level of TLR-4, MyD88, NF-κB, p-JNK, and Wnt/ß-catenin by blocking TLR-4/MyD88 and canonical Wnt signaling in diabetic pancreas, while IRS-1, PI3K, and pAkt were all upregulated by altering the NF-κB and ß-catenin crosstalk during T2DM. CONCLUSION: Overall results, indicate that AA has potential to develop as an effective therapeutic in the treatment of T2DM associated meta-inflammation. However, future preclinical research at multiple dose level in a long-term chronic T2DM disease model is warranted to understand its clinical relevance in cardiometabolic disease.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Via de Sinalização Wnt , NF-kappa B/metabolismo , beta Catenina/metabolismo , Receptor 4 Toll-Like/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Pâncreas/metabolismo , Insulina/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
3.
J Therm Biol ; 113: 103528, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055132

RESUMO

Various direct and indirect environmental constraints have an impact on livestock performance. The physiological parameters, such as rectal temperature, heart rate, and respiratory rate, are the primary indicators of thermal stress. Under a stressed environment temperature humidity index (THI) had established as a vital measurement to identify the thermal stress in livestock. THI in association with climatic variations can define the environmental effect as stressful or comfortable for livestock. Goats are small ruminants that adapt to a wide range of ecological variations due to their anatomical and physiological characteristics. However, the productivity of animals declines at the individual level during thermal stress. Stress tolerance can be determined through genetic studies associated with at the cellular level using physiological as well as molecular approaches. Information on genetic association with thermal stress in goats is scanty, this severely affects their survival and hence productivity of livestock. The ever-increasing demand for food across the globe needs deciphering novel molecular markers as well as stress indicators that play a vital role in livestock improvement. This review represents an analysis of current knowledge of phenotypic differences during thermal stress and signifies the importance of physiological responses and their association at the cellular level in goats. The regulation of vital genes associated with thermal stress such as Aquaporins (AQP 0, 1, 2, 4, 5, 6, 8), aquaglyceroporins (AQP3, 7, 9, and 10) and super-aquaporins (AQP 11, 12); BAX inhibitors such as PERK (PKR like ER kinase), IRE 1(inositol-requiring-1); Redox regulating genes such as NOX; Transport of Na+ and K+ such as ATPase (ATP1A1) and several heat shock proteins have been implicated in heat-stress related adaptations have been elucidated. As these changes have a significant impact on production performance as well as on livestock productivity. Such efforts may help in the development of molecular markers and will assist the breeders to develop heat-tolerant goats with improved productivity.


Assuntos
Cabras , Transtornos de Estresse por Calor , Animais , Cabras/genética , Temperatura Alta , Resposta ao Choque Térmico , Clima , Temperatura , Umidade , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/veterinária
4.
Toxicol Res ; 38(2): 159-174, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35419271

RESUMO

Chebulinic acid (CA) is an ellagitannins isolated from the dried fruits of Terminalia chebula with diverse pharmacological activities. The present study focused on the acute toxicity of CA in normal Sprague Dawley (SD) rats. CA was administered via oral gavage to different groups in 300 and 2000 mg/kg body weight and vehicle respectively. All the animals were monitored carefully for any physiological or behavioral changes for 14 days. On day 15th animals were euthanized and blood was collected for hematological and biochemical analysis. Different tissues were collected for histopathological study using four different staining techniques (hematoxylin and eosin, Masson's trichrome, periodic acid Schiff and picro sirius red) to observe any pathological alterations. The results highlighted no morbidity and mortality after oral ingestion of CA (300 and 2000 mg/kg). Food and water consumption, body weight, relative organ weight, hematological and biochemical parameters were normal without any gross pathological lesions in harvested tissues. The outcome of the current study supported safety of CA even at high dose. However, further detailed study is required on experimentally disease model to unfold its therapeutic potential in laboratory animals.

5.
Biochem Mol Biol Educ ; 50(2): 246-248, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35080108

RESUMO

The emergence of the global pandemic, SARS-CoV-2 has posed several challenges to education across the globe and led to the emergence and progression of newer methods of teaching and assessment. While online teaching has been quickly adopted and implemented across the globe, exams and assessment remain poorly managed both at an elementary and higher level. The practice of promoting students without an equivalent assessment or poor methods of online examinations systems poses a future difficulty in employability assessment and academic equivalence. Here we propose some suggestive measures especially for developing economies with a lack of adequate technology and insufficiently sensitized trainers for online assessment to avert the difficulties due to faulty examination schemes in pandemic situations with prolonged lockdowns.


Assuntos
COVID-19 , Educação a Distância , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Humanos , Pandemias , SARS-CoV-2
6.
Life Sci ; 296: 120021, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626604

RESUMO

AIM: Hypoxia is an important feature of multiple diseases like cancer and obesity and also an environmental stressor to high altitude travelers. Emerging research suggests the importance of redox signaling in physiological responses transforming the notion of oxidative stress into eustress and distress. However, the behavior of redox protein post-translational modifications (PTMs), and their correlation with stress acclimatization in humans remains sketchy. Scant information exists about modifications in redoxome during physiological exposure to environmental hypoxia. In this study, we investigated redox PTMs, nitrosylation and carbonylation, in context of extended environmental hypoxia exposure. METHODS: The volunteers were confirmed to be free of any medical conditions and matched for age and weight. The human global redoxome and the affected networks were investigated using TMT-labeled quantitative proteo-bioinformatics and biochemical assays. The percolator PSM algorithm was used for peptide-spectrum match (PSM) validation in database searches. The FDR for peptide matches was set to 0.01. 1-way ANOVA and Tukey's Multiple Comparison test were used for biochemical assays. p-value<0.05 was considered statistically significant. Three independent experiments (biological replicates) were performed. Results were presented as Mean ± standard error of mean (SEM). KEY FINDINGS: This investigation revealed direct and indirect interplay between nitrosylation and carbonylation especially within coagulation and inflammation networks; interlinked redox signaling (via nitrosylation­carbonylation); and novel nitrosylation and carbonylation sites in individual proteins. SIGNIFICANCE: This study elucidates the role of redox PTMs in hypoxia signaling favoring tolerance and survival. Also, we demonstrated direct and indirect interplay between nitrosylation and carbonylation is crucial to extended hypoxia tolerance.


Assuntos
Aclimatação/fisiologia , Altitude , Proteínas Sanguíneas/metabolismo , Estresse Oxidativo/fisiologia , Carbonilação Proteica , Adulto , Citocinas/sangue , Citocinas/metabolismo , Glutationa/sangue , Humanos , Hipóxia/fisiopatologia , Inflamação/metabolismo , Masculino , Óxido Nítrico/sangue , Oxirredução , Processamento de Proteína Pós-Traducional , Fatores de Tempo
7.
Life Sci ; 289: 120232, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919901

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a worldwide health issue primarily due to failure of pancreatic ß-cells to release sufficient insulin. PURPOSE: The present work aimed to assess the antidiabetic potential of arjunolic acid (AA) isolated from Terminalia arjuna in type 2 diabetic rats. STUDY DESIGN: After extraction, isolation and purification, AA was orally administered to type 2 diabetic Sprague Dawley rats to investigate antidiabetic effect of AA. METHOD: T2DM was induced via single intraperitoneal injection of streptozotocin-nicotinamide (STZ-NIC) in adult male rats. After 10 days, fasting and random blood glucose (FBG and RBG), body weight (BW), food and water intake, serum C-peptide, insulin and glycated hemoglobin (HbA1c) was measured to confirm T2DM development. Dose dependent effects of orally administered AA (25 and 50 mg/kg/day) for 4 weeks was investigated by measuring BW variation, fasting and postprandial hyperglycemia, oral glucose tolerance test (OGTT), and levels of serum HbA1c, serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), serum and pancreatic C-peptide, insulin, growth differentiation factor 15 (GDF-15), serum and pancreatic inflammatory cytokines. RESULTS: The oral administration of AA in preclinical model of T2DM significantly normalized FBG and RBG, restored BW, controlled polyphagia, polydipsia and glucose tolerance. In addition, AA notably reduced serum HbA1c, TC, TG, LDL with non-significant increase in HDL. On the other hand, significant increase in serum and pancreatic C-peptide and insulin was observed with AA treatment, while serum and pancreatic GDF-15 were non-significantly altered in AA treated diabetic rats. Moreover, AA showed dose dependent reduction in serum and pancreatic proinflammatory cytokines including TNF-α, IL-1ß and IL-6. CONCLUSION: For the first time our findings highlighted AA as a potential candidate in type 2 diabetic conditions.


Assuntos
Glicemia/metabolismo , Citocinas/sangue , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Regulação para Baixo/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inflamação/sangue , Inflamação/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley , Terminalia/química , Triterpenos/química
9.
Biomedicines ; 9(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572373

RESUMO

The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.

10.
Integr Med (Encinitas) ; 20(2): 26-30, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34377091

RESUMO

Chronic pain is a condition affecting millions of Americans annually. Veterans, as a population cohort, are often afflicted with chronic pain that is more complex, with higher rates of psychiatric and social comorbidities when compared to the general population. In this case report, we describe a veteran with major depressive disorder and alcohol abuse afflicted by high-impact chronic pain, initially treated and then maintained on high dose opioids developing dependency, who was successfully weaned off and achieved adequate pain management using complementary and alternative medicine, namely Qi gong. We conclude that complementary and alternative medicine offers a safe and effective option in providing pain relief using nonpharmacological means and thus avoiding undesired effects. We postulate that as research in this area increases, the demand for and the availability of complementary and alternative medicine will expand.

11.
Apoptosis ; 26(7-8): 431-446, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34002323

RESUMO

Extended exposure to low pO2 has multiple effects on signaling cascades. Despite multiple exploratory studies, omics studies elucidating the signaling cascades essential for surviving extended low pO2 exposures are lacking. In this study, we simulated low pO2 (PB = 40 kPa; 7620 m) exposure in male Sprague-Dawley rats for 3, 7 and 14 days. Redox stress assays and proteomics based network biology were performed using lungs and plasma. We observed that redox homeostasis was achieved after day 3 of exposure. We investigated the causative events for this. Proteo-bioinformatics analysis revealed STAT3 to be upstream of lung cytoskeletal processes and systemic lipid metabolism (RXR) derived inflammatory processes, which were the key events. Thus, during prolonged low pO2 exposure, particularly those involving slowly decreasing pressures, redox homeostasis is achieved but energy metabolism is perturbed and this leads to an immune/inflammatory signaling impetus after third day of exposure. We found that an interplay of lung cytoskeletal elements, systemic energy metabolism and inflammatory proteins aid in achieving redox homeostasis and surviving extended low pO2 exposures. Qualitative perturbations to cytoskeletal stability and innate immunity/inflammation were also observed during extended low pO2 exposure in humans exposed to 14,000 ft for 7, 14 and 21 days.


Assuntos
Apoptose , Inflamação , Animais , Homeostase , Inflamação/induzido quimicamente , Inflamação/genética , Pulmão , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley
12.
Biochem Mol Biol Educ ; 49(3): 492-499, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427394

RESUMO

Mitochondrial beta-oxidation is one of the most common modes of fatty acids' oxidation in most organisms, particularly mammals. Biochemistry undergraduate curriculum often contains the description of the process, with emphasis on ATP calculations for various types of fatty acids. During our decade long teaching experience in biochemistry, we observed the difficulty faced by students in calculating energetics of several fatty acids beyond palmitic acid. We developed a canonical formula by mathematical transformations and logical derivation to aid the calculation in a much simpler manner to ease both teaching and learning experience. ATP yield of even-numbered fatty acids may be calculated using a formula [(7C - 6 - 1.5 D) - 2(D-2)], andadenosine triphosphate (ATP) yield for odd-numbered fatty acids can be calculated using [(7C - 19 - 1.5 D) - 2(D-2)], where C is the number of carbon atoms in fatty acids, D is the number of double bonds. The unbold part of the formulae is limited to polyunsaturated fatty acids. Moreover, we integrated these formulae into an HTML based web-interface for handily calculations, which is likely to augment fatty acids oxidation learning-teaching processes easier. This tool has been recently tested in our classroom programs on biochemistry and received an excellent feedback from the learners. Also, the mathematical formula is ready for being incorporated into standard biochemistry textbooks. The webtool as an opensource biochemical calculator can be effectively used in classrooms by both instructors and students while solving comprehension based questions on lipid metabolism.


Assuntos
Bioquímica/educação , Educação de Graduação em Medicina/métodos , Metabolismo Energético , Ácidos Graxos Monoinsaturados/análise , Internet/estatística & dados numéricos , Matemática , Aprendizagem Baseada em Problemas/métodos , Estudantes/psicologia , Trifosfato de Adenosina/metabolismo , Currículo , Humanos , Oxirredução
13.
Bioinformatics ; 37(12): 1769-1771, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33416866

RESUMO

SUMMARY: Machine Learning-based techniques are emerging as state-of-the-art methods in chemoinformatics to selectively, effectively and speedily identify biologically relevant molecules from large databases. So far, a multitude of such techniques have been proposed, but unfortunately due to their sparse availability, and the dependency on high-end computational literacy, their wider adaptation faces challenges, at least in the context of G-Protein Coupled Receptors (GPCRs)-associated chemosensory research. Here, we report Machine-OlF-Action (MOA), a user-friendly, open-source computational framework, that utilizes user-supplied SMILES (simplified molecular input line entry system) of the chemicals, along with their activation status, to synthesize classification models. MOA integrates a number of popular chemical databases collectively harboring approximately 103 million chemical moieties. MOA also facilitates customized screening of user-supplied chemical datasets. A key feature of MOA is its ability to embed molecules based on the similarity of their local neighborhood, by utilizing a state-of-the-art model interpretability framework LIME. We demonstrate the utility of MOA in identifying previously unreported agonists for human and mouse olfactory receptors OR1A1 and MOR174-9 by leveraging the chemical features of their known agonists and non-agonists. In summary, here we develop an ML-powered software playground for performing supervisory learning tasks involving chemical compounds. AVAILABILITY AND IMPLEMENTATION: MOA is available for Windows, Mac and Linux operating systems. It's accessible at (https://ahuja-lab.in/). Source code, user manual, step-by-step guide and support is available at GitHub (https://github.com/the-ahuja-lab/Machine-Olf-Action). For results, reproducibility and hyperparameters, refer to Supplementary Notes. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

15.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32510549

RESUMO

Dengue virus (DENV) researchers often face challenges with the highly time-consuming process of collecting and curating information on known inhibitors during the standard drug discovery process. To this end, however, required collective information is not yet available on a single platform. Hence, we have developed the DenvInD database for experimentally validated DENV inhibitors against its known targets presently hosted at https://webs.iiitd.edu.in/raghava/denvind/. This database provides comprehensive information, i.e. PubChem IDs, SMILES, IC50, EC50, CC50, and wherever available Ki values of the 484 compounds in vitro validated as inhibitors against respective drug targets of DENV. Also, the DenvInD database has been linked to the user-friendly web-based interface and accessibility features, such as simple search, advanced search and data browsing. All the required data curation was conducted manually from the reported scientific literature and PubChem. The collected information was then organized into the DenvInD database using sequence query language under user interface by hypertext markup language. DenvInD is the first useful repository of its kind which would augment the DENV drug discovery research by providing essential information on known DENV inhibitors for molecular docking, computational screening, pharmacophore modeling and quantitative structure-activity relationship modeling.


Assuntos
Antivirais/química , Bases de Dados de Compostos Químicos , Vírus da Dengue , Dengue/tratamento farmacológico , Descoberta de Drogas , Simulação de Acoplamento Molecular , Humanos , Relação Quantitativa Estrutura-Atividade
16.
Eur J Pharmacol ; 891: 173758, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249079

RESUMO

Glucose production and the consumption of high levels of carbohydrate increase the chance of insulin resistance, especially in cases of obesity. Therefore, maintaining a balanced glucose homeostasis might form a strategy to prevent or cure diabetes and obesity. The activation and inhibition of glucose production is complicated due to the presence of many interfering pathways. These pathways can be viewed at the downstream level because they activate certain transcription factors, which include the Forkhead-O1 (FoxO1). This has been identified as a significant agent in the pancreas, liver, and adipose tissue, which is significant in the regulation of lipids and glucose. The objective of this review is to discuss the intersecting portrayal of FoxO1 and its parallel cross-talk which highlights obesity-induced insulin susceptibility in the discovery of a targeted remedy. The review also analyses current progress and provides a blueprint on therapeutics, small molecules, and extracts/phytochemicals which are explored at the pre-clinical level.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Hipoglicemiantes/uso terapêutico , Lipídeos/sangue , Obesidade/tratamento farmacológico , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Resistência à Insulina , Obesidade/complicações , Obesidade/metabolismo , Transdução de Sinais
17.
Life Sci ; 265: 118750, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188836

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) is an endotoxin that leads to inflammation in many organs, including liver. It binds to pattern recognition receptors, that generally recognise pathogen expressed molecules to transduce signals that result in a multifaceted network of intracellular responses ending up in inflammation. Aim In this study, we used lauric acid (LA), a constituent abundantly found in coconut oil to determine its anti-inflammatory role in LPS-induced liver inflammation in Sprague Dawley (SD) rats. METHOD: Male SD rats were divided into five groups (n = 8), injected with LPS and thereafter treated with LA (50 and 100 mg/kg) or vehicle orally for 14 days. After fourteen days of LA treatment, all the groups were humanely killed to investigate biochemical parameters followed by pro-inflammatory cytokine markers; tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß. Moreover, liver tissues were harvested for histopathological studies and evaluation of targeted protein expression with western blot and localisation through immunohistochemistry (IHC). RESULTS: The study results showed that treatment of LA 50 and 100 mg/kg for 14 days were able to reduce the elevated level of pro-inflammatory cytokines, liver inflammation, and downregulated the expression of TLR4/NF-κB mediating proteins in liver tissues. CONCLUSION: These findings suggest that treatment of LA has a protective role against LPS-induced liver inflammation in rats, thus, warrants further in-depth investigation through mechanistic approaches in different study models.


Assuntos
Inflamação/tratamento farmacológico , Ácidos Láuricos/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ácidos Láuricos/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
J Nat Prod ; 83(12): 3564-3570, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33305943

RESUMO

Two new diterpene pyrones, asperginols A (1) and B (2), and four known analogues (3-6) were isolated from the endophytic fungus Aspergillus sp. HAB10R12. The structures and absolute configurations of these compounds were elucidated based on the analysis of their NMR, MS, and X-ray diffraction data. The revision of the absolute configurations at C-10, C-11, and C-14 of the known diterpene pyrones (3-6) and the determination of the configuration at the polyene side chain for compounds (4-6) were made using chemical methods and vibrational circular dichroism analysis. This group of diterpene pyrone compounds showed unique structural features including a 7/6/6 tricyclic diterpene moiety with an unusual trans-syn-trans stereochemical arrangement. Compound 6 showed moderate activity against the HT-29 colon cancer cell line.


Assuntos
Aspergillus/química , Diterpenos/química , Pironas/química , Estrutura Molecular , Análise Espectral/métodos
19.
Life Sci ; 260: 118182, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781063

RESUMO

BACKGROUND: Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM: To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD: A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS: The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE: Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.


Assuntos
Doença Crônica/tratamento farmacológico , Diosgenina/uso terapêutico , Animais , Disponibilidade Biológica , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Fenômenos Químicos , Doença Crônica/prevenção & controle , Diosgenina/análogos & derivados , Diosgenina/farmacocinética , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Fitoterapia , PubMed , Sementes/química , Transdução de Sinais/efeitos dos fármacos , Trigonella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA