Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Phys Rev Lett ; 131(19): 191001, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000434

RESUMO

Detailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station. The instrument, consisting of a charge detector, an imaging calorimeter, and a total absorption calorimeter with a total depth of 30 radiation lengths at normal incidence and a fine shower imaging capability, is optimized to measure the all-electron spectrum well into the TeV region. Because of the excellent energy resolution (a few percent above 10 GeV) and the outstanding e/p separation (10^{5}), CALET provides optimal performance for a detailed search of structures in the energy spectrum. The analysis uses data up to the end of 2022, and the statistics of observed electron candidates has increased more than 3 times since the last publication in 2018. By adopting an updated boosted decision tree analysis, a sufficient proton rejection power up to 7.5 TeV is achieved, with a residual proton contamination less than 10%. The observed energy spectrum becomes gradually harder in the lower energy region from around 30 GeV, consistently with AMS-02, but from 300 to 600 GeV it is considerably softer than the spectra measured by DAMPE and Fermi-LAT. At high energies, the spectrum presents a sharp break around 1 TeV, with a spectral index change from -3.15 to -3.91, and a broken power law fitting the data in the energy range from 30 GeV to 4.8 TeV better than a single power law with 6.9 sigma significance, which is compatible with the DAMPE results. The break is consistent with the expected effects of radiation loss during the propagation from distant sources (except the highest energy bin). We have fitted the spectrum with a model consistent with the positron flux measured by AMS-02 below 1 TeV and interpreted the electron+positron spectrum with possible contributions from pulsars and nearby sources. Above 4.8 TeV, a possible contribution from known nearby supernova remnants, including Vela, is addressed by an event-by-event analysis providing a higher proton-rejection power than a purely statistical analysis.

3.
Phys Rev Lett ; 130(21): 211001, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295105

RESUMO

We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate. We show that this observed charge-sign dependence is reproduced by a numerical "drift model" of the GCR transport in the heliosphere. This is a clear signature of the drift effect on the long-term solar modulation observed with a single detector.


Assuntos
Radiação Cósmica , Voo Espacial , Telescópios , Prótons , Elétrons
4.
Phys Rev Lett ; 130(17): 171002, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172251

RESUMO

We present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium data over a large energy interval, from ∼40 GeV to ∼250 TeV, for the first time with a single instrument in low Earth orbit. The measured spectrum shows evidence of a deviation of the flux from a single power law by more than 8σ with a progressive spectral hardening from a few hundred GeV to a few tens of TeV. This result is consistent with the data reported by space instruments including PAMELA, AMS-02, and DAMPE and balloon instruments including CREAM. At higher energy we report the onset of a softening of the helium spectrum around 30 TeV (total kinetic energy). Though affected by large uncertainties in the highest energy bins, the observation of a flux reduction turns out to be consistent with the most recent results of DAMPE. A double broken power law is found to fit simultaneously both spectral features: the hardening (at lower energy) and the softening (at higher energy). A measurement of the proton to helium flux ratio in the energy range from 60 GeV/n to about 60 TeV/n is also presented, using the CALET proton flux recently updated with higher statistics.

5.
Phys Rev Lett ; 129(10): 101102, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112450

RESUMO

A precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International Space Station and covers a broader energy range with respect to the previous proton flux measurement by CALET, with an increase of the available statistics by a factor of ∼2.2. Above a few hundred GeV we confirm our previous observation of a progressive spectral hardening with a higher significance (more than 20 sigma). In the multi-TeV region we observe a second spectral feature with a softening around 10 TeV and a spectral index change from -2.6 to -2.9 consistently, within the errors, with the shape of the spectrum reported by DAMPE. We apply a simultaneous fit of the proton differential spectrum which well reproduces the gradual change of the spectral index encompassing the lower energy power-law regime and the two spectral features observed at higher energies.

6.
Phys Rev Lett ; 128(13): 131103, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426700

RESUMO

The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3 GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8 to 240 GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani et al. (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240 GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.

7.
Phys Rev Lett ; 129(25): 251103, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608255

RESUMO

We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E_{0}∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25

8.
Phys Rev Lett ; 126(24): 241101, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34213922

RESUMO

The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV/n to 2 TeV/n our present data are compatible with a single power law with spectral index -2.60±0.03.

9.
Environ Monit Assess ; 193(6): 369, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34052915

RESUMO

Abrasion of the brake lining of automobiles is one of the main antimony (Sb) sources on the road. Therefore, the road effluent possibly supplies Sb to the combined sewer collection system. However, Sb in road-sewer systems has attracted little concern, although heavy metals such as copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in sewer water have been studied by many previous authors. We investigated the effect of road effluent on Sb in the combined sewer water by collecting road effluent, road dust, and sewer water under rainy and dry weather conditions. Sb in road effluent showed a significantly higher concentration than the other types of samples, and the Sb concentration in sewer during wet weather was significantly higher than that during dry weather. Furthermore, the Sb concentration in sewer water decreased with time during a wash-off event. Clear positive relationships between Sb and Cu and between Sb and Ba in both road effluent and road dust extract indicate the effect of brake abrasion because the brake lining contains Cu, Sb, and Ba in high concentrations. Approximately 42% of Sb load occurred during the wash-off event, while the loads of Cu and Ba were much less. Unlike Cu and Ba, we conclude that Sb in combined sewer water largely depends on road effluent in wet weather due to the wash-off of road dust, which is probably associated with brake lining abrasion.


Assuntos
Poeira , Metais Pesados , Antimônio , Poeira/análise , Monitoramento Ambiental , Metais Pesados/análise , Chuva
10.
Phys Rev Lett ; 125(25): 251102, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416351

RESUMO

In this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10 GeV/n to 2.2 TeV/n with an all-calorimetric instrument with a total thickness corresponding to 1.3 nuclear interaction length. The observed carbon and oxygen fluxes show a spectral index change of ∼0.15 around 200 GeV/n established with a significance >3σ. They have the same energy dependence with a constant C/O flux ratio 0.911±0.006 above 25 GeV/n. The spectral hardening is consistent with that measured by AMS-02, but the absolute normalization of the flux is about 27% lower, though in agreement with observations from previous experiments including the PAMELA spectrometer and the calorimetric balloon-borne experiment CREAM.

11.
Phys Rev Lett ; 122(18): 181102, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144869

RESUMO

In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON). The observed spectrum is consistent with AMS-02 but extends to nearly an order of magnitude higher energy, showing a very smooth transition of the power-law spectral index from -2.81±0.03 (50-500 GeV) neglecting solar modulation effects (or -2.87±0.06 including solar modulation effects in the lower energy region) to -2.56±0.04 (1-10 TeV), thereby confirming the existence of spectral hardening and providing evidence of a deviation from a single power law by more than 3σ.

12.
Phys Rev Lett ; 120(26): 261102, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004739

RESUMO

Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result. CALET is an all-calorimetric instrument with a total thickness of 30 X_{0} at normal incidence and fine imaging capability, designed to achieve large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum in the region below 1 TeV shows good agreement with Alpha Magnetic Spectrometer (AMS-02) data. In the energy region below ∼300 GeV, CALET's spectral index is found to be consistent with the AMS-02, Fermi Large Area Telescope (Fermi-LAT), and Dark Matter Particle Explorer (DAMPE), while from 300 to 600 GeV the spectrum is significantly softer than the spectra from the latter two experiments. The absolute flux of CALET is consistent with other experiments at around a few tens of GeV. However, it is lower than those of DAMPE and Fermi-LAT with the difference increasing up to several hundred GeV. The observed energy spectrum above ∼1 TeV suggests a flux suppression consistent within the errors with the results of DAMPE, while CALET does not observe any significant evidence for a narrow spectral feature in the energy region around 1.4 TeV. Our measured all-electron flux, including statistical errors and a detailed breakdown of the systematic errors, is tabulated in the Supplemental Material in order to allow more refined spectral analyses based on our data.

13.
Phys Rev Lett ; 119(18): 181101, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219544

RESUMO

First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.

14.
Oncogene ; 36(45): 6262-6271, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-28692045

RESUMO

Epigenetic gene regulation linked to oncogenic pathways is an important focus of cancer research. KDM3A, a histone H3 lysine 9 (H3K9) demethylase, is known to have a pro-tumorigenic function. Here, we showed that KDM3A contributes to liver tumor formation through the phosphatidylinositol 3-kinase (PI3K) pathway, which is often activated in hepatocellular carcinoma. Loss of Kdm3a attenuated tumor formation in Pik3ca transgenic (Tg) mouse livers. Transcriptome analysis of pre-cancerous liver tissues revealed that the expression of activator protein 1 (AP-1) target genes was induced by PI3K activation, but blunted upon Kdm3a ablation. Particularly, the expression of Cd44, a liver cancer stem marker, was regulated by AP-1 in a Kdm3a-dependent manner. We identified Cd44-positive hepatocytes with epithelial-mesenchymal transition-related expression profiles in the Pik3ca Tg liver and confirmed their in vivo tumorigenic capacity. Notably, the number and tumor-initiating capacity of Cd44-positive hepatocytes were governed by Kdm3a. As a mechanism in Kdm3a-dependent AP-1 transcription, Kdm3a recruited c-Jun to the AP-1 binding sites of Cd44, Mmp7 and Pdgfrb without affecting c-Jun expression. Moreover, Brg1, a component of the SWI/SNF chromatin remodeling complex, interacted with c-Jun in a Kdm3a-dependent manner and was bound to the AP-1 binding site of these genes. Finally, KDM3A and c-JUN were co-expressed in 33% of human premalignant lesions with PI3K activation. Our data suggest a critical role for KDM3A in the PI3K/AP-1 oncogenic axis and propose a novel strategy for inhibition of KDM3A against liver tumor development under PI3K pathway activation.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Epigênese Genética , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/enzimologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Transdução de Sinais
15.
Oncogenesis ; 5(12): e277, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941932

RESUMO

Sharpin (Shank-associated RH domain-interacting protein, also known as SIPL1) is a multifunctional molecule that participates in various biological settings, including nuclear factor-κB signaling activation and tumor suppressor gene inhibition. Sharpin is upregulated in various types of cancers, including hepatocellular carcinoma (HCC), and is implicated in tumor progression. However, the exact roles of Sharpin in tumorigenesis and tumor progression remain largely unknown. Here we report novel mechanisms of HCC progression through Sharpin overexpression. In our study, Sharpin was upregulated in human HCC tissues. Increased Sharpin expression enhanced hepatoma cell invasion, whereas decrease in Sharpin expression by RNA interference inhibited invasion. Microarray analysis identified that Versican, a chondroitin sulfate proteoglycan that plays crucial roles in tumor progression and invasion, was also upregulated in Sharpin-expressing stable cells. Versican expression increased in the majority of HCC tissues and knocking down of Versican greatly attenuated hepatoma cell invasion. Sharpin expression resulted in a significant induction of Versican transcription synergistically with Wnt/ß-catenin pathway activation. Furthermore, Sharpin-overexpressing cells had high tumorigenic properties in vivo. These results demonstrate that Sharpin promotes Versican expression synergistically with the Wnt/ß-catenin pathway, potentially contributing to HCC development. A Sharpin/Versican axis could be an attractive therapeutic target for this currently untreatable cancer.

16.
Oncogene ; 25(20): 2950-2, 2006 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-16331247

RESUMO

A recent study revealed that the p110alpha (PIK3CA), catalytic subunit of phosphatidylinositol 3-kinase (PI3K), is somatically mutated in many types of cancer. For example, PIK3CA is mutated in an estimated 35.6% of hepatocellular carcinoma (HCC) cases. To measure the frequency of PIK3CA hotspot mutations in Japanese HCC patients, exons 9 and 20 of the PIK3CA gene were sequenced in 47 clinical HCC samples. Contrary to expectations, no hotspot mutations were found any of the HCC samples. In addition, we found abnormally migrating waves near the end of exon 9 in the PCR chromatograms from 13 of the 47 samples. PCR amplification and subsequent cloning and sequencing revealed that these chromatograms contained two distinct sequences, the wild-type p110alpha sequence and a different sequence found on human chromosome 22q11.2, the Cat Eye Syndrome region, which contains a putative pseudogene of PIK3CA. These abnormally migrating waves were also found in noncancerous liver tissue, indicating that this was not a result of HCC-associated mutations. Therefore, it is likely that the percentage of hotspot mutations in the PIK3CA gene of Japanese HCC patients is lower than was previously reported.


Assuntos
Carcinoma Hepatocelular/genética , Éxons/genética , Neoplasias Hepáticas/genética , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/epidemiologia , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Humanos , Japão/epidemiologia , Neoplasias Hepáticas/epidemiologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
17.
Oncogene ; 25(4): 633-42, 2006 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-16247477

RESUMO

Hepatitis B virus X protein (HBx) has many cellular functions and is a major factor in hepatitis and hepatocellular carcinoma caused by HBV infection. A proteomic approach was used to search for HBx-interacting proteins in order to elucidate the molecular mechanism of hepatocarcinogenesis. HBx was attached to myc and flag tags (MEF tags) and expressed in 293T cells; the protein complex formed within the cells was purified and characterized by mass spectrometry. COP9 signalosome (CSN) subunits 3 and 4 were subsequently identified as HBx-interacting proteins. In addition, CSN subunit 5, Jun activation domain-binding protein 1 (Jab1), was shown to be a novel cellular target of HBx. In vivo and in vitro interactions between HBx and Jab1 were confirmed by standard immunoprecipitation and GST pull-down assays. An analysis of HBx deletion constructs showed that amino acids 30-125 of HBx were responsible for binding to Jab1. Confocal laser microscopy demonstrated that HBx was mainly localized in the cytoplasm, while Jab1 was found mainly in the nucleus and partially in the cytoplasm, and that the two proteins colocalized in the cytoplasm. The cotransfection of HBx and Jab1 resulted in substantial activator protein 1 (AP-1) activation and knockdown of endogenous Jab1 attenuated AP-1 activation caused by HBx. In addition, the coexpression of HBx and Jab1 potentiated phosphorylation of JNK, leading to the subsequent phosphorylation of c-Jun, whereas the level of c-Jun and JNK phosphorylation induced by HBx was decreased in Jab1 knockdown cells. These results suggest that the interaction between HBx and Jab1 enhances HBx-mediated AP-1 activation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeo Hidrolases/metabolismo , Transativadores/fisiologia , Fator de Transcrição AP-1/metabolismo , Complexo do Signalossomo COP9 , Linhagem Celular , Citoplasma/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espectrometria de Massas , Complexos Multiproteicos/química , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/química , Fosforilação , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transativadores/análise , Transativadores/química , Proteínas Virais Reguladoras e Acessórias
18.
Phys Rev Lett ; 88(5): 051101, 2002 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-11863712

RESUMO

The energy spectra of cosmic-ray low-energy antiprotons ( *p's) and protons ( p's) have been measured by BESS in 1999 and 2000, during a period covering reversal at the solar magnetic field. Based on these measurements, a sudden increase of the *p/p flux ratio following the solar magnetic field reversal was observed, and it generally agrees with a drift model of the solar modulation.

19.
Phys Rev Lett ; 84(6): 1078-81, 2000 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-11017448

RESUMO

The energy spectrum of cosmic-ray antiprotons ( &pmacr;'s) has been measured in the range 0.18-3.56 GeV, based on 458 &pmacr;'s collected by BESS in a recent solar-minimum period. We have detected for the first time a characteristic peak at 2 GeV of &pmacr;'s originating from cosmic-ray interactions with the interstellar gas. The peak spectrum is reproduced by theoretical calculations, implying that the propagation models are basically correct and that different cosmic-ray species undergo a universal propagation. Future BESS data with still higher statistics will allow us to study the solar modulation and the propagation in detail and to search for primary &pmacr; components.

20.
Ann Clin Biochem ; 35 ( Pt 2): 295-301, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9547904

RESUMO

A Ca(2+)-independent phospholipase A that releases various fatty acids from sn-1 and sn-2 positions was partially purified from rat brain soluble fraction. The enzyme showed an approximate molecular mass of 300 kDa on gel filtration column chromatography. Its enzymatic properties are distinct from those of well characterized phospholipase A2 enzymes; by using a series of synthetic phosphatidylcholines, the enzyme cleaved oleic, linoleic, and arachidonic acids like phospholipase A2, and released palmitic and stearic acids like phospholipase A1. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid were hydrolysed with almost equal efficiencies by this enzyme. These results indicate that the enzyme isolated is a novel Ca(2+)-independent intracellular phospholipase A that might be responsible for production of various fatty acids from membrane phospholipids.


Assuntos
Encéfalo/enzimologia , Ácidos Graxos/metabolismo , Fosfolipases A/isolamento & purificação , Fosfolipases A/metabolismo , Animais , Ácidos Graxos/análise , Ácidos Graxos/química , Hidrólise , Masculino , Fosfatidilcolinas/metabolismo , Fosfolipases A1 , Fosfolipases A2 , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA