Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617231

RESUMO

Porcine deltacoronavirus (PDCoV) spillovers were recently detected in children with acute undifferentiated febrile illness, underscoring recurrent zoonoses of divergent coronaviruses. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated human spike (S)-directed monoclonal antibodies from transgenic mice and found that two of them, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryo-electron microscopy structures of PD33 and PD41 in complex with the PDCoV receptor-binding domain and S ectodomain trimer provide a blueprint of the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs inhibit PDCoV by competitively interfering with host APN binding to the PDCoV receptor-binding loops, explaining the mechanism of viral neutralization. PD33 and PD41 are candidates for clinical advancement, which could be stockpiled to prepare for possible future PDCoV outbreaks.

2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014024

RESUMO

SARS-CoV-2 variants acquire mutations in spike that promote immune evasion and impact other properties that contribute to viral fitness such as ACE2 receptor binding and cell entry. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning to measure how >9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry, or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully impacted ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456, and 473-however, the antigenic impacts of these mutations vary across individuals. We also identify strong escape mutations outside the RBD; however many of them decrease ACE2 binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on spike phenotypes, suggesting our data could enable better prediction of viral evolution.

3.
Front Mol Biosci ; 10: 1296941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288336

RESUMO

With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.

4.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38168207

RESUMO

Continuous evolution of SARS-CoV-2 alters the antigenicity of the immunodominant spike (S) receptor-binding domain and N-terminal domain, undermining the efficacy of vaccines and monoclonal antibody therapies. To overcome this challenge, we set out to develop a vaccine focusing antibody responses on the highly conserved but metastable S2 subunit, which folds as a spring-loaded fusion machinery. Here, we describe a protein design strategy enabling prefusion-stabilization of the SARS-CoV-2 S2 subunit and high yield recombinant expression of trimers with native structure and antigenicity. We demonstrate that our design strategy is broadly generalizable to all sarbecoviruses, as exemplified with the SARS-CoV-1 (clade 1a) and PRD-0038 (clade 3) S2 fusion machineries. Immunization of mice with a prefusion-stabilized SARS-CoV-2 S2 trimer vaccine elicits broadly reactive sarbecovirus antibody responses and neutralizing antibody titers of comparable magnitude against Wuhan-Hu-1 and the immune evasive XBB.1.5 variant. Vaccinated mice were protected from weight loss and disease upon challenge with SARS-CoV-2 XBB.1.5, providing proof-of-principle for fusion machinery sarbecovirus vaccines motivating future development.

5.
Microscopy (Oxf) ; 71(Supplement_1): i23-i29, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718671

RESUMO

A powerful aspect of single-particle cryogenic electron microscopy is its ability to determine high-resolution structures from samples containing heterogeneous mixtures of the same macromolecule in different conformational or compositional states. Beyond determining structures at higher resolutions, one outstanding question is if macromolecules with only subtle conformation differences, such as the same protein bound with different ligands in the same binding pocket, can be separated reliably, and if information concerning binding kinetics can be derived from the particle distributions of different conformations obtained in classification. In this study, we address these questions by assessing the classification of synthetic heterogeneous datasets of Transient Receptor Potential Vanilloid 1 generated by combining different homogeneous experimental datasets. Our results indicate that classification can isolate highly homogeneous subsets of particle for calculating high-resolution structures containing individual ligands, but with limitations.

6.
Nature ; 599(7884): 320-324, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707294

RESUMO

The Dispatched protein, which is related to the NPC1 and PTCH1 cholesterol transporters1,2 and to H+-driven transporters of the RND family3,4, enables tissue-patterning activity of the lipid-modified Hedgehog protein by releasing it from tightly -localized sites of embryonic expression5-10. Here we determine a cryo-electron microscopy structure of the mouse protein Dispatched homologue 1 (DISP1), revealing three Na+ ions coordinated within a channel that traverses its transmembrane domain. We find that the rate of Hedgehog export is dependent on the Na+ gradient across the plasma membrane. The transmembrane channel and Na+ binding are disrupted in DISP1-NNN, a variant with asparagine substitutions for three intramembrane aspartate residues that each coordinate and neutralize the charge of one of the three Na+ ions. DISP1-NNN and variants that disrupt single Na+ sites retain binding to, but are impaired in export of the lipid-modified Hedgehog protein to the SCUBE2 acceptor. Interaction of the amino-terminal signalling domain of the Sonic hedgehog protein (ShhN) with DISP1 occurs via an extensive buried surface area and contacts with an extended furin-cleaved DISP1 arm. Variability analysis reveals that ShhN binding is restricted to one extreme of a continuous series of DISP1 conformations. The bound and unbound DISP1 conformations display distinct Na+-site occupancies, which suggests a mechanism by which transmembrane Na+ flux may power extraction of the lipid-linked Hedgehog signal from the membrane. Na+-coordinating residues in DISP1 are conserved in PTCH1 and other metazoan RND family members, suggesting that Na+ flux powers their conformationally driven activities.


Assuntos
Microscopia Crioeletrônica , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Sódio/metabolismo , Animais , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas Hedgehog/ultraestrutura , Lipídeos de Membrana/química , Lipídeos de Membrana/isolamento & purificação , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Camundongos , Modelos Moleculares , Mutação
7.
bioRxiv ; 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013269

RESUMO

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

8.
Cell ; 184(12): 3192-3204.e16, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33974910

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.


Assuntos
Anticorpos Neutralizantes/química , Células Gigantes/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação , Células CHO , COVID-19/patologia , COVID-19/virologia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Células Gigantes/citologia , Humanos , Fusão de Membrana , Biblioteca de Peptídeos , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Res Sq ; 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34031651

RESUMO

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

10.
IUCrJ ; 7(Pt 6): 1142-1150, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209325

RESUMO

In cryogenic electron microscopy (cryo-EM) of radiation-sensitive biological samples, both the signal-to-noise ratio (SNR) and the contrast of images are critically important in the image-processing pipeline. Classic methods improve low-frequency image contrast experimentally, by imaging with high defocus, or computationally, by applying various types of low-pass filter. These contrast improvements typically come at the expense of the high-frequency SNR, which is suppressed by high-defocus imaging and removed by low-pass filtration. Recently, convolutional neural networks (CNNs) trained to denoise cryo-EM images have produced impressive gains in image contrast, but it is not clear how these algorithms affect the information content of the image. Here, a denoising CNN for cryo-EM images was implemented and a quantitative evaluation of SNR enhancement, induced bias and the effects of denoising on image processing and three-dimensional reconstructions was performed. The study suggests that besides improving the visual contrast of cryo-EM images, the enhanced SNR of denoised images may be used in other parts of the image-processing pipeline, such as classification and 3D alignment. These results lay the groundwork for the use of denoising CNNs in the cryo-EM image-processing pipeline beyond particle picking.

12.
bioRxiv ; 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699850

RESUMO

In vitro antibody selection against pathogens from naïve combinatorial libraries can yield various classes of antigen-specific binders that are distinct from those evolved from natural infection1-4. Also, rapid neutralizing antibody discovery can be made possible by a strategy that selects for those interfering with pathogen and host interaction5. Here we report the discovery of antibodies that neutralize SARS-CoV-2, the virus responsible for the COVID-19 pandemic, from a highly diverse naïve human Fab library. Lead antibody 5A6 blocks the receptor binding domain (RBD) of the viral spike from binding to the host receptor angiotensin converting enzyme 2 (ACE2), neutralizes SARS-CoV-2 infection of Vero E6 cells, and reduces viral replication in reconstituted human nasal and bronchial epithelium models. 5A6 has a high occupancy on the viral surface and exerts its neutralization activity via a bivalent binding mode to the tip of two neighbouring RBDs at the ACE2 interaction interface, one in the "up" and the other in the "down" position, explaining its superior neutralization capacity. Furthermore, 5A6 is insensitive to several spike mutations identified in clinical isolates, including the D614G mutant that has become dominant worldwide. Our results suggest that 5A6 could be an effective prophylactic and therapeutic treatment of COVID-19.

13.
Proc Natl Acad Sci U S A ; 116(18): 8869-8878, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30975749

RESUMO

TRPV5 (transient receptor potential vanilloid 5) is a unique calcium-selective TRP channel essential for calcium homeostasis. Unlike other TRPV channels, TRPV5 and its close homolog, TRPV6, do not exhibit thermosensitivity or ligand-dependent activation but are constitutively open at physiological membrane potentials and modulated by calmodulin (CaM) in a calcium-dependent manner. Here we report high-resolution electron cryomicroscopy structures of truncated and full-length TRPV5 in lipid nanodiscs, as well as of a TRPV5 W583A mutant and TRPV5 in complex with CaM. These structures highlight the mechanism of calcium regulation and reveal a flexible stoichiometry of CaM binding to TRPV5.


Assuntos
Canais de Cátion TRPV/fisiologia , Canais de Cátion TRPV/ultraestrutura , Animais , Cálcio/metabolismo , Radioisótopos de Cálcio , Clonagem Molecular , Microscopia Crioeletrônica , Modelos Químicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Coelhos , Canais de Cátion TRPV/classificação , Canais de Cátion TRPV/genética
14.
Cell ; 175(5): 1352-1364.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415841

RESUMO

Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor Patched-1/química , Receptor Patched-1/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transdução de Sinais
15.
Biol Open ; 7(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037883

RESUMO

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

16.
Science ; 359(6372): 228-232, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29217581

RESUMO

Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.


Assuntos
Canais de Cátion TRPM/química , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Microscopia Crioeletrônica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos , Modelos Moleculares , Nanoestruturas , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/ultraestrutura
17.
Bioinformatics ; 31(9): 1515-8, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540182

RESUMO

SUMMARY: Neglected tropical diseases (NTDs) caused by helminths constitute some of the most common infections of the world's poorest people. The etiological agents are complex and recalcitrant to standard techniques of molecular biology. Drug screening against helminths has often been phenotypic and typically involves manual description of drug effect and efficacy. A key challenge is to develop automated, quantitative approaches to drug screening against helminth diseases. The quantal dose-response calculator (QDREC) constitutes a significant step in this direction. It can be used to automatically determine quantitative dose-response characteristics and half-maximal effective concentration (EC50) values using image-based readouts from phenotypic screens, thereby allowing rigorous comparisons of the efficacies of drug compounds. QDREC has been developed and validated in the context of drug screening for schistosomiasis, one of the most important NTDs. However, it is equally applicable to general phenotypic screening involving helminths and other complex parasites. AVAILABILITY AND IMPLEMENTATION: QDREC is publically available at: http://haddock4.sfsu.edu/qdrec2/. Source code and datasets are at: http://tintin.sfsu.edu/projects/phenotypicAssays.html. CONTACT: rahul@sfsu.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Anti-Helmínticos/farmacologia , Testes de Sensibilidade Parasitária/métodos , Software , Animais , Relação Dose-Resposta a Droga , Internet , Fenótipo , Schistosoma/citologia , Schistosoma/efeitos dos fármacos , Schistosoma/crescimento & desenvolvimento , Esquistossomicidas/farmacologia
18.
BMC Bioinformatics ; 15 Suppl 2: S1, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24564500

RESUMO

BACKGROUND: Protein function is closely intertwined with protein structure. Discovery of meaningful structure-function relationships is of utmost importance in protein biochemistry and has led to creation of high-quality, manually curated classification databases, such as the gold-standard SCOP (Structural Classification of Proteins) database. The SCOP database and its counterparts such as CATH provide a detailed and comprehensive description of the structural and evolutionary relationships of the proteins of known structure and are widely employed in structural and computational biology. Since manual classification is both subjective and highly laborious, automated classification of novel structures is increasingly an active area of research. The design of methods for automated structure classification has been rendered even more important since the recent past, due to the explosion in number of solved structures arising out of various structural biology initiatives. In this paper we propose an approach to the problem of structure classification based on creating and tessellating low dimensional maps of the protein structure space (MPSS). Given a set of protein structures, an MPSS is a low dimensional embedding of structural similarity-based distances between the molecules. In an MPSS, a group of proteins (such as all the proteins in the PDB or sub-samplings thereof) under consideration are represented as point clouds and structural relatedness maps to spatial adjacency of the points. In this paper we present methods and results that show that MPSS can be used to create tessellations of the protein space comparable to the clade systems within SCOP. Though we have used SCOP as the gold standard, the proposed approach is equally applicable for other structural classifications. METHODS: In the proposed approach, we first construct MPSS using pairwise alignment distances obtained from four established structure alignment algorithms (CE, Dali, FATCAT and MATT). The low dimensional embeddings are next computed using an embedding technique called multidimensional scaling (MDS). Next, by using the remotely homologous Superfamily and Fold levels of the hierarchical SCOP database, a distance threshold is determined to relate adjacency in the low dimensional map to functional relationships. In our approach, the optimal threshold is determined as the value that maximizes the total true classification rate vis-a-vis the SCOP classification. We also show that determining such a threshold is often straightforward, once the structural relationships are represented using MPSS. RESULTS AND CONCLUSION: We demonstrate that MPSS constitute highly accurate representations of protein fold space and enable automatic classification of SCOP Superfamily and Fold-level relationships. The results from our automatic classification approach are remarkably similar to those found in the distantly homologous Superfamily level and the quite remotely homologous Fold levels of SCOP. The significance of our results are underlined by the fact that most automated methods developed thus far have only managed to match the closest-homology Family level of the SCOP hierarchy and tend to differ considerably at the Superfamily and Fold levels. Furthermore, our research demonstrates that projection into a low-dimensional space using MDS constitutes a superior noisereducing transformation of pairwise distances than do the variety of probability- and alignment-length-based transformations currently used by structure alignment algorithms.


Assuntos
Conformação Proteica , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas/química , Proteínas/classificação
19.
BMC Bioinformatics ; 14 Suppl 14: S10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24267485

RESUMO

BACKGROUND: Advances in technology have led to the generation of massive amounts of complex and multifarious biological data in areas ranging from genomics to structural biology. The volume and complexity of such data leads to significant challenges in terms of its analysis, especially when one seeks to generate hypotheses or explore the underlying biological processes. At the state-of-the-art, the application of automated algorithms followed by perusal and analysis of the results by an expert continues to be the predominant paradigm for analyzing biological data. This paradigm works well in many problem domains. However, it also is limiting, since domain experts are forced to apply their instincts and expertise such as contextual reasoning, hypothesis formulation, and exploratory analysis after the algorithm has produced its results. In many areas where the organization and interaction of the biological processes is poorly understood and exploratory analysis is crucial, what is needed is to integrate domain expertise during the data analysis process and use it to drive the analysis itself. RESULTS: In context of the aforementioned background, the results presented in this paper describe advancements along two methodological directions. First, given the context of biological data, we utilize and extend a design approach called experiential computing from multimedia information system design. This paradigm combines information visualization and human-computer interaction with algorithms for exploratory analysis of large-scale and complex data. In the proposed approach, emphasis is laid on: (1) allowing users to directly visualize, interact, experience, and explore the data through interoperable visualization-based and algorithmic components, (2) supporting unified query and presentation spaces to facilitate experimentation and exploration, (3) providing external contextual information by assimilating relevant supplementary data, and (4) encouraging user-directed information visualization, data exploration, and hypotheses formulation. Second, to illustrate the proposed design paradigm and measure its efficacy, we describe two prototype web applications. The first, called XMAS (Experiential Microarray Analysis System) is designed for analysis of time-series transcriptional data. The second system, called PSPACE (Protein Space Explorer) is designed for holistic analysis of structural and structure-function relationships using interactive low-dimensional maps of the protein structure space. Both these systems promote and facilitate human-computer synergy, where cognitive elements such as domain knowledge, contextual reasoning, and purpose-driven exploration, are integrated with a host of powerful algorithmic operations that support large-scale data analysis, multifaceted data visualization, and multi-source information integration. CONCLUSIONS: The proposed design philosophy, combines visualization, algorithmic components and cognitive expertise into a seamless processing-analysis-exploration framework that facilitates sense-making, exploration, and discovery. Using XMAS, we present case studies that analyze transcriptional data from two highly complex domains: gene expression in the placenta during human pregnancy and reaction of marine organisms to heat stress. With PSPACE, we demonstrate how complex structure-function relationships can be explored. These results demonstrate the novelty, advantages, and distinctions of the proposed paradigm. Furthermore, the results also highlight how domain insights can be combined with algorithms to discover meaningful knowledge and formulate evidence-based hypotheses during the data analysis process. Finally, user studies against comparable systems indicate that both XMAS and PSPACE deliver results with better interpretability while placing lower cognitive loads on the users. XMAS is available at: http://tintin.sfsu.edu:8080/xmas. PSPACE is available at: http://pspace.info/.


Assuntos
Expressão Gênica , Proteínas/química , Algoritmos , Computadores , Feminino , Genômica , Humanos , Modelos Moleculares , Gravidez , Estrutura Terciária de Proteína , Proteínas/genética
20.
IEEE Trans Med Imaging ; 32(6): 1007-18, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23428618

RESUMO

Schistosomiasis is a parasitic disease with a global health impact second only to malaria. The World Health Organization has classified schistosomiasis as an illness for which new therapies are urgently needed. However, the causative parasite is refractory to current high-throughput drug screening due to the diversity and complexity of shape, appearance and movement-based phenotypes exhibited in response to putative drugs. Currently, there is no automated image-based approach capable of relieving this deficiency. We propose and validate an image segmentation algorithm designed to overcome the distinct challenges posed by schistosomes and macroparasites in general, including irregular shapes and sizes, dense groups of touching parasites and the unpredictable effects of drug exposure. Our approach combines a region-based distributing function with a novel edge detector derived from phase congruency and grayscale thinning by threshold superposition. The method is sufficiently rapid, robust and accurate to be used for quantitative analysis of diverse parasite phenotypes in high-throughput and high-content screening.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Schistosoma/química , Esquistossomose/parasitologia , Algoritmos , Animais , Descoberta de Drogas , Humanos , Reprodutibilidade dos Testes , Schistosoma/efeitos dos fármacos , Schistosoma/isolamento & purificação , Esquistossomicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA