Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Chem Sci ; 14(7): 1687-1695, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819876

RESUMO

Phosphatidylethanolamine metabolism plays essential roles in eukaryotic cells but has not been completely investigated due to its complexity. This is because lipid species, unlike proteins or nucleic acids, cannot be easily manipulated at the single molecule level or controlled with subcellular resolution, two of the key factors toward understanding their functions. Here, we use the organelle-targeting photoactivation method to study PE metabolism in living cells with a high spatiotemporal resolution. Containing predefined PE structures, probes which can be selectively introduced into the ER or mitochondria were designed to compare their metabolic products according to their subcellular localization. We combined photo-uncaging with dual stable isotopic labeling to track PE metabolism in living cells by mass spectrometry analysis. Our results reveal that both mitochondria- and ER-released PE participate in phospholipid remodeling, and that PE methylation can be detected only under particular conditions. Thus, our method provides a framework to study phospholipid metabolism at subcellular resolution.

3.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34557909

RESUMO

Sortilin is a neuronal receptor for apolipoprotein E (apoE). Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with the apoE3 variant but is lost with the apoE4 variant, the main risk factor for Alzheimer's disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein 7 (FABP7), the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin-mediated sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Proteínas Adaptadoras de Transporte Vesicular , Doença de Alzheimer/genética , Animais , Apolipoproteína E3 , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Proteína 7 de Ligação a Ácidos Graxos , Humanos , Lipídeos , Camundongos
4.
Alzheimers Dement ; 16(9): 1248-1258, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32588544

RESUMO

INTRODUCTION: Apolipoprotein E (apoE) is a carrier for brain lipids and the most important genetic risk factor for Alzheimer's disease (AD). ApoE binds the receptor sortilin, which mediates uptake of apoE-bound cargo into neurons. The significance of this uptake route for brain lipid homeostasis and AD risk seen with apoE4, but not apoE3, remains unresolved. METHODS: Combining neurolipidomics in patient specimens with functional studies in mouse models, we interrogated apoE isoform-specific functions for sortilin in brain lipid metabolism and AD. RESULTS: Sortilin directs the uptake and conversion of polyunsaturated fatty acids into endocannabinoids, lipid-based neurotransmitters that act through nuclear receptors to sustain neuroprotective gene expression in the brain. This sortilin function requires apoE3, but is disrupted by binding of apoE4, compromising neuronal endocannabinoid metabolism and action. DISCUSSION: We uncovered the significance of neuronal apoE receptor sortilin in facilitating neuroprotective actions of brain lipids, and its relevance for AD risk seen with apoE4.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteína E4 , Endocanabinoides/metabolismo , Metabolismo dos Lipídeos , Neurônios/metabolismo , Neuroproteção , Proteínas Adaptadoras de Transporte Vesicular/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Humanos , Camundongos , Transdução de Sinais
5.
Glia ; 68(6): 1304-1316, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31898841

RESUMO

SorCS2 is an intracellular sorting receptor of the VPS10P domain receptor gene family recently implicated in oxidative stress response. Here, we interrogated the relevance of stress-related activities of SorCS2 in the brain by exploring its role in ischemic stroke in mouse models and in patients. Although primarily seen in neurons in the healthy brain, expression of SorCS2 was massively induced in astrocytes surrounding the ischemic core in mice following stroke. Post-stroke induction was likely a result of increased levels of transforming growth factor ß1 in damaged brain tissue, inducing Sorcs2 gene transcription in astrocytes but not neurons. Induced astrocytic expression of SorCS2 was also seen in stroke patients, substantiating the clinical relevance of this observation. In astrocytes in vitro and in the mouse brain in vivo, SorCS2 specifically controlled release of endostatin, a factor linked to post-stroke angiogenesis. The ability of astrocytes to release endostatin acutely after stroke was lost in mice deficient for SorCS2, resulting in a blunted endostatin response which coincided with impaired vascularization of the ischemic brain. Our findings identified activated astrocytes as a source for endostatin in modulation of post-stroke angiogenesis, and the importance of the sorting receptor SorCS2 in this brain stress response.


Assuntos
Astrócitos/citologia , Endostatinas/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores de Superfície Celular/genética , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Acidente Vascular Cerebral/metabolismo
6.
Cell Rep ; 26(10): 2792-2804.e6, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840898

RESUMO

VPS10P domain receptors emerge as central regulators of intracellular protein sorting in neurons with relevance for various brain pathologies. Here, we identified a role for the family member SorCS2 in protection of neurons from oxidative stress and epilepsy-induced cell death. We show that SorCS2 acts as sorting receptor that sustains cell surface expression of the neuronal amino acid transporter EAAT3 to facilitate import of cysteine, required for synthesis of the reactive oxygen species scavenger glutathione. Lack of SorCS2 causes depletion of EAAT3 from the plasma membrane and impairs neuronal cysteine uptake. As a consequence, SorCS2-deficient mice exhibit oxidative brain damage that coincides with enhanced neuronal cell death and increased mortality during epilepsy. Our findings highlight a protective role for SorCS2 in neuronal stress response and provide a possible explanation for upregulation of this receptor seen in surviving neurons of the human epileptic brain.


Assuntos
Epilepsia/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Epilepsia/metabolismo , Epilepsia/patologia , Transportador 3 de Aminoácido Excitatório/biossíntese , Transportador 3 de Aminoácido Excitatório/genética , Feminino , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Receptores de Superfície Celular/genética
7.
Elife ; 52016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27976998

RESUMO

At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.


Assuntos
Acetiltransferases/metabolismo , Neurônios Aferentes/enzimologia , Neurônios Aferentes/fisiologia , Processamento de Proteína Pós-Traducional , Tato , Tubulina (Proteína)/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Deleção de Genes , Camundongos , Proteínas dos Microtúbulos
8.
Nat Methods ; 12(2): 137-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486061

RESUMO

Fluorescent protein reporters have become the mainstay for tracing cellular circuitry in vivo but are limited in their versatility. Here we generated Cre-dependent reporter mice expressing the Snap-tag to target synthetic indicators to cells. Snap-tag labeling worked efficiently and selectively in vivo, allowing for both the manipulation of behavior and monitoring of cellular fluorescence from the same reporter.


Assuntos
Corantes Fluorescentes/química , Técnicas de Introdução de Genes/métodos , Genes Reporter , Integrases , Proteínas Recombinantes de Fusão/química , Animais , Proteínas da Matriz Extracelular/genética , Integrases/genética , Camundongos Transgênicos , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/genética , Proteína-Lisina 6-Oxidase/genética , RNA não Traduzido/genética , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA