Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6675, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865707

RESUMO

Total internal reflection (TIR) governs the guiding mechanisms of almost all dielectric waveguides and therefore constrains most of the light in the material with the highest refractive index. The few options available to access the properties of lower-index materials include designs that are either lossy, periodic, exhibit limited optical bandwidth or are restricted to subwavelength modal volumes. Here, we propose and demonstrate a guiding mechanism that leverages symmetry in multilayer dielectric waveguides as well as evanescent fields to strongly confine light in low-index materials. The proposed waveguide structures exhibit unusual light properties, such as uniform field distribution with a non-Gaussian spatial profile and scale invariance of the optical mode. This guiding mechanism is general and can be further extended to various optical structures, employed for different polarizations, and in different spectral regions. Therefore, our results can have huge implications for integrated photonics and related technologies.

2.
Phys Rev Lett ; 131(3): 033605, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540884

RESUMO

The many-body decay of extended collections of two-level systems remains an open problem. Here, we investigate whether an array of emitters coupled to a one-dimensional bath undergoes Dicke superradiance. This is a process whereby a completely inverted system becomes correlated via dissipation, leading to the release of all the energy in the form of a rapid photon burst. We derive the minimal conditions for the burst to happen as a function of the number of emitters, the chirality of the waveguide, and the single-emitter optical depth, both for ordered and disordered ensembles. Many-body superradiance occurs because the initial fluctuation that triggers the emission is amplified throughout the decay process. In one-dimensional baths, this avalanchelike behavior leads to a spontaneous mirror symmetry breaking, with large shot-to-shot fluctuations in the number of photons emitted to the left and right. Superradiant bursts may thus be a smoking gun for the generation of correlated photon states of exotic quantum statistics.

3.
Phys Rev Lett ; 130(21): 213605, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295080

RESUMO

Photon-mediated interactions within an excited ensemble of emitters can result in Dicke superradiance, where the emission rate is greatly enhanced, manifesting as a high-intensity burst at short times. The superradiant burst is most commonly observed in systems with long-range interactions between the emitters, although the minimal interaction range remains unknown. Here, we put forward a new theoretical method to bound the maximum emission rate by upper bounding the spectral radius of an auxiliary Hamiltonian. We harness this tool to prove that for an arbitrary ordered array with only nearest-neighbor interactions in all dimensions, a superradiant burst is not physically observable. We show that Dicke superradiance requires minimally the inclusion of next-nearest-neighbor interactions. For exponentially decaying interactions, the critical coupling is found to be asymptotically independent of the number of emitters in all dimensions, thereby defining the threshold interaction range where the collective enhancement balances out the decoherence effects. Our findings provide key physical insights to the understanding of collective decay in many-body quantum systems, and the designing of superradiant emission in physical systems for applications such as energy harvesting and quantum sensing.


Assuntos
Fótons , Análise por Conglomerados
4.
Phys Rev Lett ; 131(25): 253603, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181363

RESUMO

We realize collective enhancement and suppression of light scattered by an array of tweezer-trapped ^{87}Rb atoms positioned within a strongly coupled Fabry-Pérot optical cavity. We illuminate the array with light directed transverse to the cavity axis, in the low saturation regime, and detect photons scattered into the cavity. For an array with integer-optical-wavelength spacing each atom scatters light into the cavity with nearly identical scattering amplitude, leading to an observed N^{2} scaling of cavity photon number as the atom number increases stepwise from N=1 to N=8. By contrast, for an array with half-integer-wavelength spacing, destructive interference of scattering amplitudes yields a nonmonotonic, subradiant cavity intensity versus N. By analyzing the polarization of light emitted from the cavity, we find that Rayleigh scattering can be collectively enhanced or suppressed with respect to Raman scattering. We observe also that atom-induced shifts and broadenings of the cavity resonance are precisely tuned by varying the atom number and positions. Altogether, tweezer arrays provide exquisite control of atomic cavity QED spanning from the single- to the many-body regime.

5.
Nat Commun ; 13(1): 2285, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477714

RESUMO

Dicke superradiance is an example of emergence of macroscopic quantum coherence via correlated dissipation. Starting from an initially incoherent state, a collection of excited atoms synchronizes as they decay, generating a macroscopic dipole moment and emitting a short and intense pulse of light. While well understood in cavities, superradiance remains an open problem in extended systems due to the exponential growth of complexity with atom number. Here we show that Dicke superradiance is a universal phenomenon in ordered arrays. We present a theoretical framework - which circumvents the exponential complexity of the problem - that allows us to predict the critical distance beyond which Dicke superradiance disappears. This critical distance is highly dependent on the dimensionality and atom number. Our predictions can be tested in state of the art experiments with arrays of neutral atoms, molecules, and solid-state emitters and pave the way towards understanding the role of many-body decay in quantum simulation, metrology, and lasing.

6.
Sci Adv ; 7(10)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33658203

RESUMO

Broken symmetries induce strong even-order nonlinear optical responses in materials and at interfaces. Unlike conventional covalently bonded nonlinear crystals, van der Waals (vdW) heterostructures feature layers that can be stacked at arbitrary angles, giving complete control over the presence or lack of inversion symmetry at a crystal interface. Here, we report highly tunable second harmonic generation (SHG) from nanomechanically rotatable stacks of bulk hexagonal boron nitride (BN) crystals and introduce the term twistoptics to describe studies of optical properties in twistable vdW systems. By suppressing residual bulk effects, we observe SHG intensity modulated by a factor of more than 50, and polarization patterns determined by moiré interface symmetry. Last, we demonstrate greatly enhanced conversion efficiency in vdW vertical superlattice structures with multiple symmetry-broken interfaces. Our study paves the way for compact twistoptics architectures aimed at efficient tunable frequency conversion and demonstrates SHG as a robust probe of buried vdW interfaces.

7.
Phys Rev Lett ; 125(26): 263601, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449783

RESUMO

Fully inverted atoms placed at exactly the same location synchronize as they deexcite, and light is emitted in a burst (known as "Dicke's superradiance"). We investigate the role of finite interatomic separation on correlated decay in mesoscopic chains and provide an understanding in terms of collective jump operators. We show that the superradiant burst survives at small distances, despite Hamiltonian dipole-dipole interactions. However, for larger separations, competition between different jump operators leads to dephasing, suppressing superradiance. Collective effects are still significant for arrays with lattice constants of the order of a wavelength, and lead to a photon emission rate that decays nonexponentially in time. We calculate the two-photon correlation function and demonstrate that emission is correlated and directional, as well as sensitive to small changes in the interatomic distance. These features can be measured in current experimental setups, and are robust to realistic imperfections.

8.
Proc Natl Acad Sci U S A ; 116(51): 25503-25511, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772012

RESUMO

The optical properties of subwavelength arrays of atoms or other quantum emitters have attracted significant interest recently. For example, the strong constructive or destructive interference of emitted light enables arrays to function as nearly perfect mirrors, support topological edge states, and allow for exponentially better quantum memories. In these proposals, the assumed atomic structure was simple, consisting of a unique electronic ground state. Within linear optics, the system is then equivalent to a periodic array of classical dielectric particles, whose periodicity supports the emergence of guided modes. However, it has not been known whether such phenomena persist in the presence of hyperfine structure, as exhibited by most quantum emitters. Here, we show that waveguiding can arise from rich atomic entanglement as a quantum many-body effect and elucidate the necessary conditions. Our work represents a significant step forward in understanding collective effects in arrays of atoms with realistic electronic structure.

9.
Nature ; 569(7758): 692-697, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092923

RESUMO

It has long been recognized that atomic emission of radiation is not an immutable property of an atom, but is instead dependent on the electromagnetic environment1 and, in the case of ensembles, also on the collective interactions between the atoms2-6. In an open radiative environment, the hallmark of collective interactions is enhanced spontaneous emission-super-radiance2-with non-dissipative dynamics largely obscured by rapid atomic decay7. Here we observe the dynamical exchange of excitations between a single artificial atom and an entangled collective state of an atomic array9 through the precise positioning of artificial atoms realized as superconducting qubits8 along a one-dimensional waveguide. This collective state is dark, trapping radiation and creating a cavity-like system with artificial atoms acting as resonant mirrors in the otherwise open waveguide. The emergent atom-cavity system is shown to have a large interaction-to-dissipation ratio (cooperativity exceeding 100), reaching the regime of strong coupling, in which coherent interactions dominate dissipative and decoherence effects. Achieving strong coupling with interacting qubits in an open waveguide provides a means of synthesizing multi-photon dark states with high efficiency and paves the way for exploiting correlated dissipation and decoherence-free subspaces of quantum emitter arrays at the many-body level10-13.

10.
Proc Natl Acad Sci U S A ; 113(38): 10507-12, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27582467

RESUMO

Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

11.
Nanoscale ; 6(4): 2077-81, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24424350

RESUMO

3D plasmonic chiral colloids are synthesized through deterministically grouping of two gold nanorod AuNRs on DNA origami. These nanorod crosses exhibit strong circular dichroism (CD) at optical frequencies which can be engineered through position tuning of the rods on the origami. Our experimental results agree qualitatively well with theoretical predictions.


Assuntos
DNA/química , Ouro/química , Nanotubos/química , Dicroísmo Circular
12.
Nano Lett ; 13(5): 2128-33, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23600476

RESUMO

Molecular chemistry offers a unique toolkit to draw inspiration for the design of artificial metamolecules. For a long time, optical circular dichroism has been exclusively the terrain of natural chiral molecules, which exhibit optical activity mainly in the UV spectral range, thus greatly hindering their significance for a broad range of applications. Here we demonstrate that circular dichroism can be generated with artificial plasmonic chiral nanostructures composed of the minimum number of spherical gold nanoparticles required for three-dimensional (3D) chirality. We utilize a rigid addressable DNA origami template to precisely organize four nominally identical gold nanoparticles into a three-dimensional asymmetric tetramer. Because of the chiral structural symmetry and the strong plasmonic resonant coupling between the gold nanoparticles, the 3D plasmonic assemblies undergo different interactions with left and right circularly polarized light, leading to pronounced circular dichroism. Our experimental results agree well with theoretical predictions. The simplicity of our structure geometry and, most importantly, the concept of resorting on biology to produce artificial photonic functionalities open a new pathway to designing smart artificial plasmonic nanostructures for large-scale production of optically active metamaterials.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Dicroísmo Circular , Tamanho da Partícula , Propriedades de Superfície
13.
Phys Rev Lett ; 106(21): 213601, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699296

RESUMO

The rotational dynamics of particles subject to external illumination is found to produce light amplification and inelastic scattering at high rotation velocities. Light emission at frequencies shifted with respect to the incident light by twice the rotation frequency dominates over elastic scattering within a wide range of light and rotation frequencies. Remarkably, net amplification of the incident light is produced in this classical linear system via stimulated emission. Large optically induced acceleration rates are predicted in vacuum accompanied by moderate heating of the particle, thus supporting the possibility of observing these effects under extreme rotation conditions.

14.
Opt Express ; 18(4): 3568-73, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389365

RESUMO

Based on the ray transformation matrix formalism, we propose a simple method for generation of paraxial beams performing anisotropic rotation in the phase space during their propagation through isotropic optical systems. The widely discussed spiral beams are the particular case of these beams. The propagation of these beams through the symmetric fractional Fourier transformer is demonstrated by numerical simulations.


Assuntos
Modelos Teóricos , Dispositivos Ópticos , Refratometria/instrumentação , Anisotropia , Simulação por Computador , Luz , Rotação , Espalhamento de Radiação
15.
Nano Lett ; 10(5): 1859-63, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20415459

RESUMO

We introduce a theory to describe the interaction of swift electrons with strong evanescent light fields. This allows us to explain recent experimental results of multiple energy losses and gains for electrons passing near illuminated nanostructures. A complex evolution of the electron state over attosecond time scales is unveiled, giving rise to non-Poissonian distributions of multiphoton features in the electron spectra. Prospects for application to nanoscale-resolved transmission electron microscopy and spectroscopy are discussed.


Assuntos
Iluminação/métodos , Modelos Químicos , Nanoestruturas/química , Nanotecnologia/métodos , Refratometria/métodos , Absorção , Simulação por Computador , Elétrons , Transferência de Energia , Nanoestruturas/ultraestrutura , Fótons , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA