Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Behav ; 269: 114277, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352905

RESUMO

Among the physiological differences between the sexes are circulating androgen levels. Testosterone (T) is an androgen that has been linked to aggression and risk-taking in male vertebrates, so that males with higher T are generally more aggressive and take more risks. In females, T is not often measured, and its relationship with behaviour has been less studied. The costs of elevated T are assumed to be higher for reproductive females, while the benefits higher for males. Here, we tested the association between endogenous T and risk-taking behaviours in both males and females under well-studied experimental settings in free-living Baluchistan gerbils (Gerbillus nanus; Gn). In addition, we experimentally elevated Gn T levels using implants and measured risk-taking behaviour. Surprisingly, we found that there were no differences in the association between T and risk-taking behaviours between males and females, and that in both sexes, Gn with higher T levels took fewer risks. We also found that Gn spent equal time foraging between risky (open habitat) and safe (under a bush) experimental food patches. We expected Gn, which are nocturnal, to take fewer risks during full moon nights, but found that Gn were more active during moon lit nights than during dark (new moon) nights. This study demonstrates that T has many functions, and that its effects are complex and often unpredictable. It also shows that hypotheses regarding the propensity to take risks under specific coverage and light regimes are not universal, and likely include variables such as species, environment, context, and predator-specific behavioural strategies.


Assuntos
Androgênios , Testosterona , Animais , Feminino , Masculino , Gerbillinae/fisiologia , Reprodução , Agressão
2.
Sci Rep ; 13(1): 5834, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037862

RESUMO

The divergence of total alkalinity (TA) from conservation with salinity (S) and relatively acidic conditions (pH) in surface seawater was suggested to explain the high prevalence of lightning superbolts in the Mediterranean sea, North sea and upwelling regions of the oceans. In this study we tested the combined effects of changes in S, TA and pH of Mediterranean sea surface water on the intensity of laboratory generated electrical sparks, which are considered to be analogous to cloud to sea-surface intensity of lightning discharges. The experimental results were used to develop a multivariate linear equation (MLE) of Lightning Flash Intensity (LFI) as a function of S, TA/S and pH. This relation was validated with wintertime (DJF) LFI measurements along a Mediterranean sea zonal profile during the period 2009-2020 compared to corresponding climate model outputs of S, TA and pH. Based on the resulting MLE, the combined effects of climate change, ocean acidification and the damming of the Nile, may have increased LFI in the Levantine Sea by 16 ± 14% until now relative to the pre-Aswan Dam period. Furthermore, assuming that salinization and acidification of the Levantine Sea will continue at current trends, the LFI is predicted to increase by 25 ± 13% by the year 2050.

3.
Sci Rep ; 10(1): 21847, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318602

RESUMO

The anthropogenic increase in atmospheric CO2 is not only considered to drive global warming, but also ocean acidification. Previous studies have shown that acidification will affect many aspects of biogenic carbon uptake and release in the surface water of the oceans. In this report we present a potential novel impact of acidification on the flash intensity of lightning discharged into the oceans. Our experimental results show that a decrease in ocean pH corresponding to the predicted increase in atmospheric CO2 according to the IPCC RCP 8.5 worst case emission scenario, may increase the intensity of lightning discharged into seawater by approximately 30 ± 7% by the end of the twenty-first century relative to 2000.

4.
Gen Comp Endocrinol ; 291: 113418, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32027878

RESUMO

Although testosterone (T) is a key regulator in vertebrate development, physiology, and behaviour in both sexes, studies suggest that its regulation may be sex-specific. We measured circulating T levels in Baluchistan gerbils (Gerbillus nanus) in the field and in the lab all year round and found no significant sex differences. However, we observed sex differences in circulating T levels following gonadotropin-releasing hormone (GnRH) challenge and T implants in this non-model species. Whereas only males elevated T following a GnRH challenge, females had higher serum T concentrations following T implant insertion. These differences may be a result of different points of regulation along the hypothalamic-pituitary-gonadal (HPG) axis. Consequently, we examined sex differences in the mRNA expression of the androgen receptor (AR) in multiple brain regions. We identified AR and ß-actin sequences in assembled genomic sequences of members of the Gerbillinae, which were analogous to rat sequences, and designed primers for them. The distribution of the AR in G. nanus brain regions was similar to documented expression profiles in rodents. We found lower AR mRNA levels in females in the striatum. Additionally, G. nanus that experienced housing in mixed-sex pairs had higher adrenal AR expression than G. nanus that were housed alone. Regulation of the gerbil HPG axis may reflect evolutionary sex differences in life-history strategies, with males ready to reproduce when receptive females are available, while the possible reproductive costs associated with female T direct its regulation upstream.


Assuntos
Gerbillinae/sangue , Caracteres Sexuais , Testosterona/sangue , Sequência de Aminoácidos , Animais , Feminino , Regulação da Expressão Gênica , Gerbillinae/genética , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/química , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
5.
Parasitol Res ; 115(9): 3337-44, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27130319

RESUMO

Evaluating host resistance via parasite fitness helps place host-parasite relationships within evolutionary and ecological contexts; however, few studies consider both these processes simultaneously. We investigated how different levels of parasite pressure affect parasite mortality and reproductive success in relationship to host defense efforts, using the rodent Gerbillus nanus and the flea Xenopsylla conformis as a host-parasite system. Fifteen immune-naïve male rodents were infested with 20, 50, or 100 fleas for four weeks. During this time number of new imagoes produced per adult flea (our flea reproductive output metric), flea mortality, and change in circulating anti-flea immunoglobulin G (our measure of adaptive immune defense) were monitored. Three hypotheses guided this work: (1) increasing parasite pressure would heighten host defenses; (2) parasite mortality would increase and parasite reproductive output would decrease with increasing investment in host defense; and (3) hosts under high parasite pressure could invest in behavioral and/or immune responses. We predicted that at high infestation levels (a) parasite mortality would increase; (b) flea reproductive output per individual would decrease; and (c) host circulating anti-flea antibody levels would increase. The hypotheses were partially supported. Flea mortality significantly increased and flea reproductive output significantly decreased as flea pressure increased. Host adaptive immune defense did not significantly change with increasing flea pressure. Therefore, we inferred that investment in host behavioral defense, either alone or in combination with density-dependent effects, may be more efficient at increasing flea mortality and decreasing flea reproductive output than antibody production during initial infestation in this system.


Assuntos
Infestações por Pulgas/veterinária , Gerbillinae/parasitologia , Interações Hospedeiro-Parasita , Doenças dos Roedores/parasitologia , Sifonápteros/fisiologia , Animais , Evolução Biológica , Feminino , Infestações por Pulgas/parasitologia , Masculino , Parasitos/fisiologia , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA