Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38118337

RESUMO

Throughout this research, a new magnetic molecularly imprinted polymer on fibrous silica nanosphere was prepared through self-polycondensation. The selective extraction of chlorpyrifos was performed by the synthesized sorbent and as a determination system, a gas chromatography-electron capture was applied. The formation of sorbent was confirmed through the use of Fourier transform infrared spectroscopy and field emission scanning electron microscopy techniques. The parameters affecting the extraction efficacy of the proposed method were scrutinized in an optimized way. The linear range and the detection limit of the studied method were 0.003-0.3 and 0.001 ng mL-1, respectively. The relative standard deviations were 4.1-5.2 and 5.6-7.6 % for intra- and inter-day (n = 3), respectively. To assess the performance of the proposed method, some water and fruit samples were analyzed and the extraction recoveries of 83-109 % were obtained. These results revealed the method's performance in the analysis of chlorpyrifos in real samples.


Assuntos
Clorpirifos , Impressão Molecular , Nanosferas , Clorpirifos/análise , Polímeros Molecularmente Impressos , Dióxido de Silício/química , Polímeros/química , Extração em Fase Sólida/métodos , Adsorção , Fenômenos Magnéticos , Impressão Molecular/métodos
2.
Int J Phytoremediation ; 25(2): 137-145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35475769

RESUMO

In this study, cottonwood seeds (CWS) were introduced as a novel, green, and low-cost biosorbents for the removal of crystal violet (CV) dye from aqueous solutions. To illustrate the characteristics of CWS, surface morphology, Fourier-transform infrared spectroscopy, field emission scanning electron microscopes, and energy dispersive X-ray spectroscopy techniques were employed. Important adsorption variables (i.e., equilibrium time, solution pH, CWS amount, CV concentration, and temperature) were systematically studied. Maximum CV dye adsorption was observed at pH 10 using 20 mg of the adsorbent. Different adsorption isotherms were investigated, and the results were more accurately consistent with the Langmuir model (R2 = 0.992). The maximum capacity of adsorption was 153.85 mg g-1 at 60 min. The kinetic data were examined by different models and a pseudo-second-order model supplied the best correlation between experimental data. Investigated thermodynamic parameters at different temperatures illustrated that the CV adsorption procedure was spontaneous and endothermic with an increase in entropy. The percentage removal and the relative standard deviations for the real sample analysis were in the range of 89-98% and 4.9-9.5%, respectively. High adsorption capacity and low equilibrium time demonstrated that CWS is an impressive biosorbent for dye pollutants uptakes from aqueous solutions and real industrial wastewater samples.


A novel, green, available, and low-cost cottonwood seeds were introduced for the removal of crystal violet from aqueous media. In terms of adsorption capacity and contact time, cottonwood seeds show excellent performance compared to the other low-cost biosorbents previously reported for the adsorption of the organic dye from wastewater. The use of cottonwood seeds to remove environmental pollutants has not been introduced yet.


Assuntos
Populus , Poluentes Químicos da Água , Violeta Genciana/análise , Violeta Genciana/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Termodinâmica , Cinética , Adsorção , Sementes/química , Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA